Skip to main content
Log in

Time dependence of the aggregation of star-shaped poly(2-isopropyl-2-oxazolines) in aqueous solutions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The paper concerns the analysis of time t eq required to equilibrium state achievement in aqueous solutions of star-shaped poly(2-isopropyl-2-oxazolines) (PiPrOx) after changing temperature. The discussed data were obtained for PiPrOx differing in arm number and length. For all samples, high t eq values, half an hour at least, were obtained because of rather high intramolecular density. The dependence t eq on temperature displayed maximum near the phase separation beginning due to the aggregate growth and redistribution of scattering particles. The maximum times t eq increased symbatically with arm number and length. The higher energy of the hydrogen bond formed by deuterium isotope leads to the growth of the t eq values as compared to solutions in H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meyer M, Antonietti M, Schlaad H (2007) Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline. Soft Matter 3:430–431

    Article  CAS  Google Scholar 

  2. Contreras MM, Mattea C, Rueda JC, Stapf S, Bajd F (2015) Synthesis and characterization of block copolymers from 2-oxazolines. Des Monomers Polym 18:170–179

    Article  CAS  Google Scholar 

  3. Obeid R, Maltseva E, Thünemann AF, Tanaka F, Winnik FM (2009) Temperature response of self-assembled micelles of telechelic hydrophobically modified poly(2-alkyl-2-oxazoline)s in water. Macromolecules 42:2204–2214

    Article  CAS  Google Scholar 

  4. Hruby M, Filippov SK, Panek J, Novakova M, Mackova H, Kucka J, Ulbrich K (2010) Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol Biosci 10:916–924

    Article  CAS  Google Scholar 

  5. Saha A, Ramakrishnan S (2008) AB2 + A type copolymerization approach for the preparation of thermosensitive PEGylated Hyperbranched polymers. Macromolecules 41:5658–5664

    Article  CAS  Google Scholar 

  6. de la Rosa VR, Nau WM, Hoogenboom R (2015) Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Org Biomol Chem 13:3048–3057

    Article  Google Scholar 

  7. Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119

    Article  CAS  Google Scholar 

  8. Zaccone A, Crassous JJ, Béri B, Ballauff M (2011) Quantifying the reversible association of thermosensitive nanoparticles. Phys Rev Lett 107:168303

    Article  Google Scholar 

  9. Ye J, Xu J, Hu J, Wang X, Zhang G, Liu S, Wu C (2008) Comparative study of temperature-induced association of cyclic and linear poly(N-isopropylacrylamide) chains in dilute solutions by laser light scattering and stopped-flow temperature jump. Macromolecules 41:4416–4422

    Article  CAS  Google Scholar 

  10. Zhao J, Hoogenboom R, Van Assche G, Van Mele B (2010) Demixing and remixing kinetics of poly(2-isopropyl-2-oxazoline) (PIPOZ) aqueous solutions studied by modulated temperature differential scanning calorimetry. Macromolecules 43:6853–6860

    Article  CAS  Google Scholar 

  11. Han X, Zhang X, Zhu H, Yin Q, Liu HL, Hu Y (2013) Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors. Langmuir 29:1024–1034

    Article  CAS  Google Scholar 

  12. Adelsberger J, Grillo I, Kulkarni A, Sharp M, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2013) Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers – influence of concentration, start and target temperatures. Soft Matter 9:1685–1699

    Article  CAS  Google Scholar 

  13. Filippov AP, Amirova AI, Dudkina MM, Tenkovtsev AV (2013) Thermoresponsive star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solution. Int J Polym Anal Charact 18:567–577

    Article  CAS  Google Scholar 

  14. Amirova AI, Dudkina MM, Tenkovtsev AV, Filippov AP (2015) Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid Polym Sci 293:239–248

    Article  CAS  Google Scholar 

  15. Filippov AP, Amirova AI, Nikolaeva MN, Dudkina MM, Tenkovtsev AV (2014) Deuterium isotope effect on solution behavior of thermoresponsive star-shaped poly(2-isopropyl-2-oxazoline. Int J Polym Anal Charact 19:721–730

    Article  CAS  Google Scholar 

  16. Amirova AI, Nikolaeva MN, Dudkina MM, Kurlykin MP, Ten’kovtsev AV, Filippov AP (2016) The role of deuterium isotope in the formation of the behavior of thermoresponsive poly(2-isopropyl-2-oxazoline). Polym Sci A. doi:10.7868/S2308112016050023

    Google Scholar 

  17. Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) Influence of arm length and number on star-shaped poly(2-isopropyl-2-oxazoline) aggregation in aqueous solutions near cloud point. Soft Matter 14:15–26

    Article  CAS  Google Scholar 

  18. Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) The effect of arm number and solution concentration on phase separation of thermosensitive poly(2-isopropyl-2-oxazoline) stars in aqueous solutions. Colloid Polym Sci 294:947–956

    Article  CAS  Google Scholar 

  19. Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP. Influence of arm length on aqueous solution behavior of thermosensitive poly(2-isopropyl-2-oxazoline) stars (submitted)

  20. Filippov AP, Tarabukina EB, Zakharova NV, Amirova AI, Simonova MA (2015) Behaviorial features of aqueous solutions of thermoresponsive and pH-sensitive polymers with complicated architectures. Fibre Chem 47:137–143

    Article  CAS  Google Scholar 

  21. Adelsberger J, Metwalli E, Diethert A, Grillo I, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2012) Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump. Macromol Rapid Commun 33:254–259

    Article  CAS  Google Scholar 

  22. Cheng G, Hua F, Melnichenko YB, Hong K, Mays JW, Hammouda B, Wignall GD (2008) Conformation of oligo(ethylene glycol) grafted poly(norbornene) in solutions: a small angle neutron scattering study. Eur Polym J 44:2859–2864

    Article  CAS  Google Scholar 

  23. Bogomolova A, Hruby M, Panek J, Rabyk M, Turner S, Bals S, Steinhart M, Zhigunov A, Sedlacek O, Stepanek P, Filippov SK (2013) Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties. J Appl Crystallogr 46:1690–1698

    Article  CAS  Google Scholar 

  24. Kratochvil P (1987) Classical light scattering from polymer solution. Elsevier, Amsterdam

    Google Scholar 

  25. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

  26. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525

    Article  CAS  Google Scholar 

  27. Güner PT, Mikó A, Schweinberger FF, Demirel AL (2012) Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polym Chem 3:322–324

    Article  Google Scholar 

  28. Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994

    Article  CAS  Google Scholar 

  29. Weller D, McDaniel JR, Fischer K, Chilkoti A, Schmidt M (2013) Cylindrical polymer brushes with elastin-like polypeptide side chains. Macromolecules 46:4966–4971

    Article  CAS  Google Scholar 

  30. Katsumoto Y, Tsuchiizu A, Qiu XP, Winnik FM (2012) Dissecting the mechanism of the heat-induced phase separation and crystallization of poly(2-isopropyl-2-oxazoline) in water through vibrational spectroscopy and molecular orbital calculations. Macromolecules 45:3531–3541

    Article  CAS  Google Scholar 

  31. Dworak A, Trzebicka B, Kowalczuk A, Tsvetanov C, Rangelov S (2014) Polyoxazolines – mechanism of synthesis and solution properties. Polimery 59:88–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support was provided by the Russian Science Foundation (project no. 14-13-00231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Amirova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirova, A., Rodchenko, S. & Filippov, A. Time dependence of the aggregation of star-shaped poly(2-isopropyl-2-oxazolines) in aqueous solutions. J Polym Res 23, 221 (2016). https://doi.org/10.1007/s10965-016-1112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1112-4

Keywords

Navigation