Skip to main content
Log in

Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Eight-arm star-shaped poly(2-isopropyl-2-oxazoline) (PiPrOx) with calix[8]arene core (M ≈ 20,000 g mol−1) was studied by turbidimetry and light scattering in aqueous solutions within concentration c ranging from 0.002 to 0.19 g cm−3. The lower critical solution temperature (LCST) for PiPrOx is about 10 °C lower than for the linear analog. PiPrOx forms two types of particles at room temperature. The specie responsible for the fast mode is single macromolecules or 2–3 ones joined in aggregate with a hydrodynamic radius of 4.9 nm, irrespective of concentration. On heating, at first, growth of a large aggregate fraction was observed without variation of their hydrodynamic radii R h (s). Then, R h (s) increased up to 800 nm at c = 0.002 g cm−3, while the fast mode disappeared. At all concentrations, the third middle mode with a size ranging from 9 to 40 nm was registered. It was observed in a very narrow temperature interval near the cloud point. The hydrodynamic radii of species and their fraction in solution were monitored as a function of time after the change in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23. doi:10.1016/j.progpolymsci.2009.10.002

    Article  CAS  Google Scholar 

  2. Theato P, Sumerlin BS, O’Reilly RK, Epps TH III (2013) Stimuli responsive materials. Chem Soc Rev 42:7055–7056. doi:10.1039/C3CS90057F

    Article  CAS  Google Scholar 

  3. Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643. doi:10.1007/s00396-009-2028-x

    Article  CAS  Google Scholar 

  4. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242. doi:10.3390/polym3031215

    Article  CAS  Google Scholar 

  5. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483. doi:10.1039/C2CS35191A

    Article  CAS  Google Scholar 

  6. Iatridi Z, Tsitsilianis C (2011) Water-soluble stimuli responsive star-shaped segmented macromolecules. Polymers 3:1911–1933. doi:10.3390/polym3041911

    Article  CAS  Google Scholar 

  7. Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci Part A: Polym Chem 51:2980–2994. doi:10.1002/pola.26696

    Article  CAS  Google Scholar 

  8. Libera M, Walach W, Trzebicka B, Rangelov S, Dworak A (2011) Thermosensitive dendritic stars of tert-butyl-glycidylether and glycidol—synthesis and encapsulation properties. Polymer 52:3526–3536. doi:10.1016/j.polymer.2011.06.003

    Article  CAS  Google Scholar 

  9. Xu F, Zheng SZ, Luo YL (2013) Thermosensitive t-PLA-b-PNIPAAm tri-armed star block copolymer nanoscale micelles for camptothecin drug release. J Polym Sci Part A: Polym Chem 51:4429–4439. doi:10.1002/pola.26859

    Article  CAS  Google Scholar 

  10. Liu YY, Zhong YB, Nan JK, Tian W (2010) Star polymers with both temperature sensitivity and inclusion functionalities. Macromolecules 43:10221–10230. doi:10.1021/ma1019973

    Article  CAS  Google Scholar 

  11. Kowalczuk A, Mendrek B, Zymelka-Miara I, Libera M, Marcinkowski A, Trzebicka B, Smet M, Dworak A (2012) Solution behavior of star polymers with oligo(ethylene glycol) methyl ether methacrylate arms. Polymer 53:5619–5631. doi:10.1016/j.polymer.2012.10.022

    Article  CAS  Google Scholar 

  12. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525. doi:10.1002/marc.200900683

    Article  CAS  Google Scholar 

  13. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714. doi:10.1016/j.progpolymsci.2011.10.002

    Article  CAS  Google Scholar 

  14. Kim KM, Ouchi Y, Chujo Y (2003) Synthesis of organic-inorganic star-shaped polyoxazolines using octafunctional silsesquioxane as an initiator. Polym Bull 49:341–348. doi:10.1007/s00289-002-0113-0

    Article  CAS  Google Scholar 

  15. Jin RH (2002) Controlled location of porphyrin in aqueous micelles self-assembled from porphyrin centered amphiphilic star poly(oxazolines). Adv Mater 14:889–892. doi:10.1002/1521-4095(20020618)14:12<889::AID-ADMA889>3.0.CO;2-6

    Article  CAS  Google Scholar 

  16. Jin RH (2004) Water soluble star block poly(oxazoline) with porphyrin label: a unique emulsion and its shape direction. J Mater Chem 14:320–327. doi:10.1039/B307439K

    Article  CAS  Google Scholar 

  17. Jin RH (2003) Self-assembly of porphyrin-centered amphiphilic star block copolymer into polymeric vesicular aggregates. Macromol Chem Phys 204:403–409. doi:10.1002/macp.200390008

    Article  CAS  Google Scholar 

  18. Kowalczuk A, Kronek J, Bosowska K, Trzebicka B, Dworak A (2011) Star poly(2-ethyl-2-oxazoline)s—synthesis and thermosensitivity. Polym Int 60:1001–1009. doi:10.1002/pi.3103

    Article  CAS  Google Scholar 

  19. Filippov AP, Amirova AI, Dudkina MM, Tenkovtsev AV (2013) Thermoresponsive star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solution. Int J Polym Anal Charact 18:567–577. doi:10.1080/1023666X.2013.836925

    Article  CAS  Google Scholar 

  20. Ten’kovtsev AV, Trofimov AE, Shcherbinskaya LI (2012) Thermoresponsive star-shaped poly(2-isopropyl-2-oxazolines) based on octa-tert-butylcalix[8]arene. Polym Sci B 54:142–148. doi:10.1134/S1560090412030098

    Google Scholar 

  21. Filippov AP, Romanova OA, Vinogradova LV (2010) Molecular and hydrodynamic characteristics of star-shaped polystyrenes with one or two fullerene (C60) molecules as a branching center. Polym Sci A 52:221–227. doi:10.1134/S0965545X10030016

    Article  Google Scholar 

  22. Filippov AP, Belyaeva EV, Tarabukina EB, Amirova AI (2011) Behavior of hyperbranched polymers in solutions. Polym Sci C 53:107–117. doi:10.1134/S1811238211060014

    CAS  Google Scholar 

  23. Filippov AP, Zamyshlyayeva OG, Tarabukina EB, Simonova MA, Kozlov AV, Semchikov YD (2012) Structural and conformational properties of hyperbranched copolymers based on perfluorinated germanium hydrides. Polym Sci A 54:319–329. doi:10.1134/S0965545X12050033

    Article  CAS  Google Scholar 

  24. Tsvetkov VN (1989) Rigid-chain polymers. Plenum, New York

    Google Scholar 

  25. Berne BJ, Pecora R (2000) Dynamic light scattering with applications to chemistry, biology, and physics. Wiley, New York

    Google Scholar 

  26. Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis CM (2012) Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid Polym Sci 290:385–400. doi:10.1007/s00396-011-2564-z

    Article  CAS  Google Scholar 

  27. Aseyev V, Tenhu H, Winnik FM (2011) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89. doi:10.1007/12_2010_57

    Article  CAS  Google Scholar 

  28. Huber S, Jordan R (2008) Modulation of the lower critical solution temperature of 2-alkyl-2-oxazoline copolymers. Colloid Polym Sci 286:395–402. doi:10.1007/s00396-007-1781-y

    Article  CAS  Google Scholar 

  29. Kratochvil P (1987) Classical light scattering from polymer solution. Elsevier, Amsterdam

    Google Scholar 

  30. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

  31. Momekova D, Budurova D, Drakalska E, Shenkov S, Momekov G, Trzebicka B, Lambov N, Tashev E, Rangelov S (2012) Aggregation behavior and in vitro biocompatibility study of octopus-shaped macromolecules based on tert-butylcalix[4]arenes. Int J Pharm 436:410–417. doi:10.1016/j.ijpharm.2012.06.053

    Article  CAS  Google Scholar 

  32. Obeid R, Maltseva E, Thünemann AF, Tanaka F, Winnik FM (2009) Temperature response of self-assembled micelles of telechelic hydrophobically modified poly(2-alkyl-2-oxazoline)s in water. Macromolecules 42:2204–2214. doi:10.1021/ma802592f

    Article  CAS  Google Scholar 

  33. Hruby M, Filippov SK, Panek J, Novakova M, Mackova H, Kucka J, Ulbrich K (2010) Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol Biosci 10:916–924. doi:10.1002/mabi.201000034

    Article  CAS  Google Scholar 

  34. Caponi PF, Qiu XP, Vilela F, Winnik FM, Ulijn RV (2011) Phosphatase/temperature responsive poly(2-isopropyl-2-oxazoline). Polym Chem 2:306–308. doi:10.1039/C0PY00291G

    Article  CAS  Google Scholar 

  35. Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119. doi:10.1021/ma300969w

    Article  CAS  Google Scholar 

  36. Domnina NS, Sergeeva OY, Koroleva AN, Rakitina OV, Dobrun LA, Filippov SK, Mikhailova ME, Lezov AV (2010) Molecular properties of conjugates formed by synthetic hydrophilic polymers and sterically hindered phenols. Polym Sci A 52:900–906. doi:10.1134/S0965545X1009004X

    Article  Google Scholar 

  37. Steinschulte AA, Schulte B, Rütten S, Eckert T, Okuda J, Möller M, Schneider S, Borisov OV, Plamper FA (2014) Effects of architecture on the stability of thermosensitive unimolecular micelles. Phys Chem Chem Phys 16:4917–4932. doi:10.1039/c3cp54707h

    Article  CAS  Google Scholar 

  38. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243. doi:10.1039/C3CS35499G

    Article  CAS  Google Scholar 

  39. Han X, Zhang X, Zhu H, Yin Q, Liu HL, Hu Y (2013) Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors. Langmuir 29:1024–1034. doi:10.1021/la3036874

    Article  CAS  Google Scholar 

  40. Meyer M, Antonietti M, Schlaad H (2007) Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline). Soft Matter 3:430–431. doi:10.1039/B616678D

    Article  CAS  Google Scholar 

  41. Bühler J, Muth S, Fischer K, Schmidt M (2013) Collapse of cylindrical brushes with 2-isopropyloxazoline side chains close to the phase boundary. Macromol Rapid Commun 34:588–594. doi:10.1002/marc.201200784

    Article  Google Scholar 

  42. Korchagina EV, Qiu XP, Winnik FM (2013) Effect of heating rate on the pathway for vesicle formation in salt-free aqueous solutions of thermosensitive cationic diblock copolymers. Macromolecules 46:2341–2351. doi:10.1021/ma302666e

    Article  CAS  Google Scholar 

  43. Zaccone A, Crassous JJ, Béri B, Ballauff M (2011) Quantifying the reversible association of thermosensitive nanoparticles. Phys Rev Lett 107:168303(4). doi:10.1103/PhysRevLett.107.168303

    Article  Google Scholar 

  44. Xu Y, Bolisetty S, Drechsler M, Fang B, Yuan J, Ballauff M, Müller AHE (2008) pH and salt responsive poly(N, N-dimethylaminoethyl methacrylate) cylindrical brushes and their quaternized derivatives. Polymer 49:3957–3964. doi:10.1016/j.polymer.2008.06.051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support was given by the Russian Science Foundation (project no. 14-13-00231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina I. Amirova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirova, A.I., Dudkina, M.M., Tenkovtsev, A.V. et al. Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid Polym Sci 293, 239–248 (2015). https://doi.org/10.1007/s00396-014-3402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3402-x

Keywords

Navigation