Skip to main content
Log in

Insights into the physico-chemical behavior of CoCl2/polyimide hybrid materials

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hybrid fluorinated polyimide materials have been obtained by incorporation of various quantities of cobalt(II) chloride (CoCl2) into polyimide matrix. Polycondensation reaction of equimolar amounts of 4,4′-diamino-3′3′-dimethyldiphenylmethane and 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride has been carried out to produce in the first stage a polyamidic acid solution in which CoCl2 × 6H2O has been placed. Further thermal treatment of this system led to the corresponding imide structure filled with the halide salt. An exhaustive study was directed to the influence of Co2+ ions on the modified polyimide behavior as a function of its surroundings. To survey the functional properties of as-obtained Co2+-containing polyimide systems, several techniques such as FTIR, UV-vis and broadband dielectric spectroscopy, differential scanning calorimetry, and thermogravimetric and scanning electron microscopy were employed. A special concern was directed to the study of the optical properties induced by the addition of CoCl2 into polymer solutions and films. The magnetic response of the polyimide was investigated in correlation with the salt quantity embedded in the PI film. The variation of the real and imaginary parts of the hybrid films’ dielectric permittivity was registered in a broad frequency and temperature range, from 10 to 106 Hz and from −130 to 230 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adhikari B, Majumdar S (2004) Prog Polym Sci 29:699–766

    Article  CAS  Google Scholar 

  2. Rubinger CPL, Martins CR, De Paoli MA, Rubinger RM (2007) Sensors Actuators B 123:42–49

    Article  CAS  Google Scholar 

  3. Kolpakov SA, Gordon NT, Mou C, Zhou K (2014) Sensors 14:3986–4013

    Article  Google Scholar 

  4. Wright ME, Petteys BJ, Guenthner AJ, Fallis S, Yandek GR, Tomczak SJ, Minton TK, Brunsvold A (2006) Macromolecules 39:4710–4718

    Article  CAS  Google Scholar 

  5. Rajesh, Ahuja T, Kumar D (2009) Sensors Actuators B Chem 136:275–286

    Article  CAS  Google Scholar 

  6. Chisca S, Sava I, Bruma M (2013) Polym Int 62:1634–1643

    CAS  Google Scholar 

  7. Chen Z, Lu C (2005) Sens Lett 3:274–295

    Article  CAS  Google Scholar 

  8. Huang X, Sheng D, Cen K, Zhou H (2007) Sensors Actuators B Chem 127:518–524

    Article  CAS  Google Scholar 

  9. Ueda M, Nakamura K, Tanaka K, Kita H, Okamoto K (2007) Sensors Actuators B Chem 127:463–470

    Article  CAS  Google Scholar 

  10. Shinbo K, Otuki S, Kanbayashi Y, Ohdaira Y, Baba A, Kato K, Kaneko F, Miyadera N (2009) Thin Solid Films 518:629–633

    Article  CAS  Google Scholar 

  11. Yoo KP, Lim LT, Min NK, Lee MJ, Lee CJ, Park CW (2010) Sensors Actuators B Chem 145:120–125

    Article  CAS  Google Scholar 

  12. Lee H, Lee S, Jung S, Lee J (2011) Sensors Actuators B Chem 154:2–8

    Article  CAS  Google Scholar 

  13. Berruti G, Consales M, Giordano M, Sansone L, Petagna P, Buontempo S, Breglio G, Cusano A (2013) Sensors Actuators B 177:94–102

    Article  CAS  Google Scholar 

  14. Alwis L, Sun T, Grattan KTV (2013) IEEE Sensors J 13:767–771

    Article  Google Scholar 

  15. Choi KS, Kim DS, Yang HJ, Ryu MS, Chang SP (2014) RSC Adv 4:32075–32080

    Article  CAS  Google Scholar 

  16. Yuan W, Wang X, Nie Y, Li J, Sang M (2015) Appl Opt 54:834–838

    Article  CAS  Google Scholar 

  17. Khijwania SK, Srinivasan KL, Singh JP (2005) Sensors Actuators B Chem 104:217–222

    Article  CAS  Google Scholar 

  18. Tsigara A, Mountrichas G, Gatsouli K, Nichelatti A, Madamopoulos N, Vainos NA, Du HL, Pispas S, Roubani-Kalantzopoulou F (2007) Sensors Actuators B Chem 120:481–486

    Article  CAS  Google Scholar 

  19. Boggess RK, Taylor LT (1987) J Polym Sci Part A: Polym Chem 25:685–702

    Article  CAS  Google Scholar 

  20. Halper SR, Villahermosa RM (2009) Appl Mater Interfaces 1:1041–1044

    Article  CAS  Google Scholar 

  21. Zidan HM, Abu-Elnader M (2005) Physica B 355:308–317

    Article  CAS  Google Scholar 

  22. Abdelrazek EM, Elashmawi IS (2008) Polym Compos 29:1036–1043

    Article  CAS  Google Scholar 

  23. Varma IK, Saxena S, Tripathi A, Goel TC, Varma DS (1986) J Appl Polym Sci 32:3987–4000

    Article  CAS  Google Scholar 

  24. Khor E, Taylor LT (1985) A study of cobalt containing polyimide film, in: Metal-Containing Polymeric Systems, Sheats J E, Carraher Jr C E, Pittman Jr C U (eds) Plenum, New York, p. 367–384

  25. Sava I, Chisca S, Bruma M, Lisa G (2010) Polym Bull 65:363–375

    Article  CAS  Google Scholar 

  26. Damaceanu MD, Sava I, Constantin CP (2016) Sensors Actuators B Chem 234:549–561

    Article  CAS  Google Scholar 

  27. Sava I, Chisca S, Bruma M, Lisa G (2011) J Therm Anal Calorim 104:1135–1143

    Article  CAS  Google Scholar 

  28. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Ebrahimiast S, Dehzangi A (2012) Int J Mol Sci 13:4860–4872

    Article  Google Scholar 

  29. El-Shahawy MA (1993) Polym Bull 31:199–203

    Article  CAS  Google Scholar 

  30. Rancourt JD, Taylor LT (1987) Macromolecules 20:790–795

    Article  CAS  Google Scholar 

  31. Ronova IA, Bruma M, Kuznetsov AA, Nikolaev AY (2013) Polym Adv Technol 24:615–622

    Article  CAS  Google Scholar 

  32. Narayanan J, Solano-Peralta A, Ugalde-Saldivar VM, Escudero R, Hopfl H, Sosa-Torres ME (2008) Inorg Chim Acta 361:2747–2758

    Article  CAS  Google Scholar 

  33. Zhan J, Tian G, Jiang L, Wu Z, Wu D, Yang X, Jin R (2008) Thin Solid Films 516:6315–6320

    Article  CAS  Google Scholar 

  34. Chisca S, Sava I, Musteata V, Bruma M (2011) Eur Polym J 47:1186–1197

    Article  CAS  Google Scholar 

  35. Chisca S, Musteata V, Stoica I, Sava I, Bruma M (2013) J Polym Res 20:111

    Article  Google Scholar 

  36. Saji J, Khare A, Choudhary RNP, Mahapatra SP (2014) J Polym Res 21:341

    Article  Google Scholar 

  37. Zheng Q, Cao YX, Du M (2004) Chin J Polym Sci 22:363–367

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Sava.

Additional information

Dedicated to the 150th anniversary of the Romanian Academy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sava, I., Damaceanu, MD. & Lisa, G. Insights into the physico-chemical behavior of CoCl2/polyimide hybrid materials. J Polym Res 23, 130 (2016). https://doi.org/10.1007/s10965-016-1021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1021-6

Keywords

Navigation