Skip to main content
Log in

Superhydrophobic/highly oleophobic surfaces based on poly(3,4-propylenedioxythiophene) surface post-functionalization

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here, we report for the first time the use of poly(3,4-propylenedioxythiophene) as platform for surface post-functionalization using the Staudinger-Vilarrasa reaction in order to covalently link perfluorinated chains and obtain various hydrophobic/oleophobic properties. 3,4-propylenedioxythiophene with one or two azido groups are prepared, in order to determine the impact of the number of functional groups on the surface morphology and wettability. Here, we show the possibility to prepare parahydrophobic (high water adhesion) or superhydrophobic (low water adhesion) surfaces with highly oleophilic to highly oleophobic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169:80–105

    Article  CAS  Google Scholar 

  2. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6:510–530

    Article  CAS  Google Scholar 

  3. Oberli L, Caruso D, Hall C, Fabretto M, Murphy PJ, Evans D (2014) Condensation and freezing of droplets on superhydrophobic surfaces. Adv Colloid Interface Sci 210:47–57

    Article  CAS  Google Scholar 

  4. Zhang P, Lv FY (2015) A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82:1068–1087

    Article  Google Scholar 

  5. Marmur A (2012) Hydro- hygro- oleo- omni-phobic? terminology of wettability classification. Soft Matter 8:6867–6870

    Article  CAS  Google Scholar 

  6. Watson GS, Green DW, Schwarzkopf L, Li X, Cribb BW, Myhra S, Watson JA (2015) A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater 21:109–122

    Article  CAS  Google Scholar 

  7. Karapanagiotis I, Manoudis PN, Zurba A, Lampakis D (2014) From hydrophobic to superhydrophobic and superhydrophilic siloxanes by thermal treatment. Langmuir 30:13235–13243

    Article  CAS  Google Scholar 

  8. Bellanger H, Darmanin T, Taffin de Givenchy E, Guittard F (2014) Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem Rev 114:2694–2716

    Article  CAS  Google Scholar 

  9. Hensel R, Neinhuis C, Werner C (2016) The springtail cuticle as a blueprint for omniphobic surfaces. Chem Soc Rev 45:323–341

  10. Starostin A, Valtsifer V, Strelnikov V, Bormashenko E, Grynyov R, Bormashenko Y, Gladkikh A (2014) Robust technique allowing the manufacture of superoleophobic (omniphobic) metallic surfaces. Adv Eng Mater 16:1127–1132

    Article  CAS  Google Scholar 

  11. Liu T, Kim C-J (2014) Turning a surface superrepellent even to completely wetting liquids. Science 346:1096–1100

    Article  CAS  Google Scholar 

  12. Szczepanski CR, Darmanin T, Guittard F (2015) Using poly(3,4-ethylenedioxythiophene) containing a carbamate linker as a platform to develop electrodeposited surfaces with tunable wettability and adhesion. RSC Adv 5:89407–89414

    Article  CAS  Google Scholar 

  13. Ramos Chagas G, Darmanin T, Guittard F (2015) Nanostructured superhydrophobic films by electrodeposition of fluorinated polyindoles. Beilstein J Nanotechnol 6:2078–2087

    Article  Google Scholar 

  14. Mortier C, Darmanin T, Guittard F (2014) Major influence of the alkyl chain length of poly(2,4-dialkyl-3,4-propylenedioxythiophene) on the surface fibrous structures and hydrophobicity. Polym Adv Technol 25:1252–1256

    Article  CAS  Google Scholar 

  15. Darmanin T, Diouf A, El-Maiss J, Dieng SY, Guittard F (2015) Control over water adhesion of nanostructured parahydrophobic films using mesh substrates. ChemNanoMat 1:497–501

  16. Kerszulis JA, Amb CM, Dyer AL, Reynolds JR (2014) Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers. Macromolecules 47:5462–5469

    Article  CAS  Google Scholar 

  17. Estrada LA, Deininger JJ, Kamenov GD, Reynolds JR (2013) Direct (hetero)arylation polymerization: An effective route to 3,4-propylenedioxythiophene-based polymers with low residual metal content. ACS Macro Lett 2:869–873

    Article  CAS  Google Scholar 

  18. Beaujuge PM, Vasilyeva SV, Liu DY, Ellinger S, McCarley TD, Reynolds JR (2012) Structure-performance correlations in spray-processable green dioxythiophene-benzothiadiazole donor–acceptor polymer electrochromes. Chem Mater 24:255–268

    Article  CAS  Google Scholar 

  19. Mortier C, Darmanin T, Guittard F (2014) The major influences of substituent size and position of 3,4-propylenedioxythiophene on the formation of highly hydrophobic nanofibers. ChemPlusChem 79:1434–1439

    Article  CAS  Google Scholar 

  20. Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev 109:5620–5686

    Article  CAS  Google Scholar 

  21. Lancuski A, Fort S, Bossard F (2012) Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry. ACS Appl Mater Interfaces 4:6499–6504

    Article  CAS  Google Scholar 

  22. Huisgen R (1984) In 1,3-Dipolar cycloaddition chemistry. Wiley, New York, pp. 1–176

    Google Scholar 

  23. Rostovtsev VV, Green LG, Fokin VV, Sharpless KBA (2002) A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  24. Bu H-B, Goetz G, Reinold E, Vogt A, Azumi R, Segura JL, Baeuerle P (2012) “click”-modification of a functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) soluble in organic solvents. Chem Commun 48:2677–2679

    Article  CAS  Google Scholar 

  25. Godeau G, N’Na J, Darmanin T, Guittard F (2015) Azidomethyl-EDOT as a platform for tunable surfaces with nanostructures and superhydrophobic properties. J Phys Chem B 119:6873–6877

    Article  CAS  Google Scholar 

  26. Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry. Chem Mater 26:724–744

    Article  CAS  Google Scholar 

  27. Burés J, Martín M, Urpí F, Vilarrasa J (2009) Catalytic staudinger-vilarrasa reaction for the direct ligation of carboxylic acids and azides. J Org Chem 74:2203–2206

    Article  Google Scholar 

  28. Godeau G, Darmanin T, Guittard F (2015) Staudinger vilarassa reaction: A powerful tool for surface modification and superhydrophobic properties. J Colloid Interface Sci 457:72–77

    Article  CAS  Google Scholar 

  29. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: A superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  30. Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) “Petal effect” on surfaces based on lycopodium: high stick surfaces demonstrating high apparent contact angles. J Phys Chem C 113:5568–5572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.-P. Laugier and François Orange of the Centre Commun de Microscopie Appliquée (CCMA, Univ. Nice Sophia Antipolis) for the SEM Images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Guittard.

Electronic supplementary material

ESM 1

(DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godeau, G., Darmanin, T. & Guittard, F. Superhydrophobic/highly oleophobic surfaces based on poly(3,4-propylenedioxythiophene) surface post-functionalization. J Polym Res 23, 81 (2016). https://doi.org/10.1007/s10965-016-0969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0969-6

Keywords

Navigation