Skip to main content
Log in

A facile and novel modification method of β-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, a facile and novel method was adopted in tailoring β-cyclodextrin (CD), which can drastically improve its surface hydrophobicity and decrease its water solubility. By this way, the interfacial compatibility between CD and polypropylene (PP) is distinctly strengthened after modification that is well certified by scanning electron microscope (SEM) and molecular dynamics simulation, respectively. Surprisingly, the flame retardant properties of PP compositing with modified CD (CM) are slightly higher than that of PP/CD. Moreover, the flame retardancy of PP/CM system can be maintained after water treatment. Except that, the synergistic effect of expandable graphite (EG) on the flame retardant properties of PP/melamine phosphate (MP)/CM system were systematically investigated. It can be observed that when the content of EG is 10 wt.%, the flame retardant properties of PP system achieve 31.2 % in limiting oxygen index tests and pass UL-94 V-0 rating in vertical burning tests. And a potential condensed flame retardant mechanism was proposed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 3

Similar content being viewed by others

References

  1. Upadhyay RD, Kale DD (2001) Rheological and optical properties of polypropylene filled with synthetic silicates and calcium carbonate. J Polym Res 8(3):175–181

    Article  CAS  Google Scholar 

  2. Zhu YL, Liang CS, Yang B et al (2015) Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate. J Polym Res 22:35–46

    Article  Google Scholar 

  3. Peng Y, Liu R, Cao JZ et al (2014) Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose. Appl Surf Sci 317:385–392

    Article  CAS  Google Scholar 

  4. Song PA, Shen Y, Du BX et al (2009) Effects of reactive compatibilization on the morphological, thermal, mechanical, and rheological properties of intumescent flame-retardant polypropylene. ACS Appl Mater Interfaces 1(2):452–459

    Article  CAS  Google Scholar 

  5. Tsai KC, Kuan HC, Chou HW et al (2014) Preparation of expandable graphite using a hydrothermal method and flame-retardant properties of its halogen-free flame-retardant HDPE composites. J Polym Res 18(4):483–488

    Article  Google Scholar 

  6. Wang B, Zhou KQ, Jiang SH et al (2014) Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties. Mater Res Bull 56:107–112

    Article  CAS  Google Scholar 

  7. Liu Y, Wang Q (2009) The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. J Polym Res 16(5):583–589

    Article  CAS  Google Scholar 

  8. Zuo JD, Su YK, Liu SM et al (2011) Preparation and properties of FR-PP with phosphorus-containing intumescent flame retardant. J Polym Res 18(5):1125–1129

    Article  CAS  Google Scholar 

  9. Chen XL, Jiao CM (2009) Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. J Polym Res 16(5):537–543

    Article  CAS  Google Scholar 

  10. Chiang CL, Hsu SW (2010) Novel epoxy/expandable graphite halogen-free flame retardant composites-preparation, characterization, and properties. J Polym Res 17(3):315–323

    Article  CAS  Google Scholar 

  11. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part I-Thermal degradation of ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 6(4):243–252

    Article  CAS  Google Scholar 

  12. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part II-Mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 7(1):25–31

    Article  CAS  Google Scholar 

  13. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part III-Effect of urea on the ammonium polyphosphate-pentaerythritol system. Polym Degrad Stab 7(4):221–229

    Article  CAS  Google Scholar 

  14. Camino G, Costa L, Trossarelli L et al (1984) Study of the mechanism of intumescence in fire retardant polymers: Part IV-Evidence of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 8(1):13–22

    Article  CAS  Google Scholar 

  15. Camino G, Costa L, Trossarelli L (1985) Study of the mechanism of intumescence in fire retardant polymers: Part V-Mechanism of formation of gaseous products in the thermal degradation of ammonium polyphosphate. Polym Degrad Stab 12(3):203–211

    Article  CAS  Google Scholar 

  16. Camino G, Costa L, Trossarelli L et al (1985) Study of the mechanism of intumescence in fire retardant polymers: Part VI-Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 12(3):213–228

    Article  CAS  Google Scholar 

  17. Camino G, Costa L, Martinasso G (1989) Intumescent fire-retardant systems. Polym Degrad Stab 23(4):359–376

    Article  CAS  Google Scholar 

  18. Sun LS, Qu YT, Li SX (2013) Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings. J Therm Anal Calorim 111(2):1099–1106

    Article  CAS  Google Scholar 

  19. Wang BB, Wang XF, Tang G et al (2012) Preparation of silane precursor microencapsulated intumescent flame retardant and its enhancement on the properties of ethylene–vinyl acetate copolymer cable. Compos Sci Technol 72(9):1042–1048

    Article  CAS  Google Scholar 

  20. Dong MZ, Gu XY, Zhang S et al (2013) Effects of acidic sites in HA zeolite on the fire performance of polystyrene composite. Ind Eng Chem Res 52(26):9145–9154

    Article  CAS  Google Scholar 

  21. Jindasuwan S, Sukmanee N, Supanpong C et al (2013) Influence of hydrophobic substance on enhancing washing durability of water soluble flame-retardant coating. Appl Surf Sci 275:239–243

    Article  CAS  Google Scholar 

  22. Saihi D, Vroman I, Giraud S et al (2006) Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. React Funct Polym 66(10):1118–1125

    Article  CAS  Google Scholar 

  23. Lin HJ, Yan H, Liu B et al (2011) The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites. Polym Degrad Stab 96(7):1382–1388

    Article  CAS  Google Scholar 

  24. Qu HQ, Hao JW, Wu WH, Zhao XW, Jiang SB, Fire J (2012) Science 30:357–371

    Google Scholar 

  25. Réti C, Casetta M, Duquesne S et al (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19(6):628–635

    Article  Google Scholar 

  26. Chirico AD, Armanini M, Chini P et al (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79(1):139–145

    Article  Google Scholar 

  27. Hu S, Song L, Pan HF et al (2012) Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure. J Anal Appl Pyrol 97:109–115

    Article  CAS  Google Scholar 

  28. Laufer G, Kirkland C, Cain AA et al (2012) Clay-Chitosan Nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649

    Article  CAS  Google Scholar 

  29. Matkó S, Toldy A, Keszei S et al (2005) Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 88(1):138–145

    Article  Google Scholar 

  30. Feng JX, Su SP, Zhu J (2011) An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym Adv Technol 22(7):1115–1122

    Article  CAS  Google Scholar 

  31. Alongi J, Poskovic M, Frache A et al (2010) Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym Degrad Stab 95(10):2093–2100

    Article  CAS  Google Scholar 

  32. Chung DDL (2016) A review of exfoliated graphite. J Mater Sci 51(1):554–568

    Article  CAS  Google Scholar 

  33. Chen Y, Zou HW, Liang M (2014) Non-isothermal crystallization study of in-situ exfoliated graphite filled nylon 6 composites. J Polym Res 21:417–426

    Article  Google Scholar 

  34. Jiang WZ, Hao JW, Han ZD (2012) Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene. Polym Degrad Stab 97(4):632–637

    Article  CAS  Google Scholar 

  35. Zheng ZH, Li WJ, Sun HM et al (2013) Preparation and characterization of polystyrene/modified carbon black composite beads via in situ suspension polymerization. Polym Compos 34(7):1110–1118

    Article  CAS  Google Scholar 

  36. Zheng ZH, Yan JT, Sun HM et al (2014) Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polym Int 63(1):84–92

    Article  CAS  Google Scholar 

  37. Zheng ZH, Sun HM, Li WJ et al (2014) Co-microencapsulation of ammonium polyphosphate and aluminum hydroxide in halogen-free and intumescent flame retarding polypropylene. Polym Compos 35(4):715–729

    Article  CAS  Google Scholar 

  38. Zheng ZH, Qiang LH, Yang T et al (2014) Preparation of microencapsulated ammonium polyphosphate with carbon source- and blowing agent-containing shell and its flame retardance in polypropylene. J Polym Res 21:443–457

    Article  Google Scholar 

  39. Costa L, Camino G, Cortemiglia MPL (1990) Fire and polymers chapter 15, American

  40. Li J, Ke CH, Xu L et al (2012) Synergistic effect between a hyperbranched charring agent and ammonium polyphosphate on the intumescent flame retardance of acrylonitrile-butadiene-styrene polymer. Polym Degrad Stab 97(7):1107–1113

    Article  CAS  Google Scholar 

  41. Akten ED, Mattice WL (2001) Monte Carlo simulation of head-to-head, tail-to-tail polypropylene and its mixing with polyethylene in the melt. Macromolecules 34(10):3389–3395

    Article  CAS  Google Scholar 

  42. Lan YH, Li DH, Yang RJ et al (2013) Computer simulation study on the compatibility of cyclotriphosphazene containing aminopropylsilicone functional group in flame retarded polypropylene/ammonium polyphosphate composites. Compos Sci Technol 88:9–15

    Article  CAS  Google Scholar 

  43. Liao RJ, Zhu MZ, Zhou X (2012) Molecular dynamics study of the disruption of H-bonds by water molecules and its diffusion behavior in amorphous cellulose. Mod Phys Lett B 26(14):1250088

    Article  Google Scholar 

  44. Tian NN, Wen X, Jiang ZW et al (2013) Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene. Ind Eng Chem Res 52(2013):10905–10915

    Article  CAS  Google Scholar 

  45. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712

    Article  CAS  Google Scholar 

  46. Zheng ZH, Liu SF, Wang BN et al (2015) Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system. Polym Compos 36(9):1606–1619

    Article  CAS  Google Scholar 

  47. Guo D, Wang Q, Bai SB (2013) Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy. Polym Adv Technol 24(3):339–347

    Article  CAS  Google Scholar 

  48. Zhao CX, Liu Y, Wang DY et al (2008) Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym Degrad Stab 93(7):1323–1331

    Article  CAS  Google Scholar 

  49. Huang GB, Liang HD, Wang Y et al (2012) Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater Chem Phys 132(2–3):520–528

    Article  CAS  Google Scholar 

  50. Huang GB, Zhuo A, Wang LQ et al (2011) Preparation and flammability properties of intumescent flame retardant-functionalized layered double hydroxides/polymethyl methacrylate nanocomposites. Mater Chem Phys 130(1–2):714–720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihang Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Zhang, L., Liu, Y. et al. A facile and novel modification method of β-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite. J Polym Res 23, 74 (2016). https://doi.org/10.1007/s10965-015-0905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0905-1

Keywords

Navigation