Skip to main content
Log in

Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is modified by melamine (MA) via the strong ππ interactions, hydrogen bonding, and electrostatic attraction. PP composites are prepared by melt compounding method, and GO/functionalized graphene oxide (FGO) is in situ thermally reduced during the processing. The results of scanning electron microscopy and transmission electron microscopy indicate that FGO nanosheets are homogeneously dispersed in polymer matrix with intercalation and exfoliation microstructure. The FGO/PP nanocomposite exhibits higher thermal stability and flame retardant property than those of the GO counterpart. During the thermal decomposition, the intercalated MA is condensed to graphitic carbon nitride (g-C3N4) in the confined micro-zone created by GO nanosheets. This in situ formed g-C3N4 provides a protective layer to graphene and enhances its barrier effect. The heat release rate and the escape of volatile degradation products are reduced in the FGO-based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077

    Article  Google Scholar 

  2. Zhang H-B, Zheng W-G, Yan Q, Jiang Z-G, Yu Z-Z (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50:5117–5125

    Article  Google Scholar 

  3. Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. doi:10.1007/s10853-013-7420-8

    Article  Google Scholar 

  4. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  5. Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52:1837–1846

    Article  Google Scholar 

  6. Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789

    Article  Google Scholar 

  7. Yuan BH, Bao CL, Song L, Hong NN, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420

    Article  Google Scholar 

  8. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  9. Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A 38:1675–1682

    Article  Google Scholar 

  10. Ye S, Feng J (2013) A new insight into the in situ thermal reduction of graphene oxide dispersed in a polymer matrix. Polym Chem 4:1765–1768

    Article  Google Scholar 

  11. Zhu JH, Chen MJ, He QL, Shao L, Wei SY, Guo ZH (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824

    Article  Google Scholar 

  12. Ran SY, Guo ZH, Han LG, Fang ZP (2014) Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int 63:1835–1841

    Article  Google Scholar 

  13. Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214–4222. doi:10.1007/s10853-013-7234-8

    Article  Google Scholar 

  14. Bao CL, Song L, Wilkie CA, Yuan BH, Guo YQ, Hu Y, Gong XL (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22:16399–16406

    Article  Google Scholar 

  15. Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil 98:1495–1505

    Article  Google Scholar 

  16. Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916–926

    Article  Google Scholar 

  17. Ran SY, Chen C, Guo ZH, Fang ZP (2014) Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J Appl Polym Sci 131:40520

    Article  Google Scholar 

  18. Song PA, Yu YM, Zhang T, Fu SY, Fang ZP, Wu Q (2012) Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites. Ind Eng Chem Res 51:7255–7263

    Article  Google Scholar 

  19. Huang GB, Wang SQ, Song PA, Wu CL, Chen SQ, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos Part A 59:18–25

    Article  Google Scholar 

  20. Gong J, Niu R, Liu J, Chen XC, Wen X, Mijowska E, Sun ZY, Tang T (2014) Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv 4:33776–33784

    Article  Google Scholar 

  21. Dittrich B, Wartig KA, Mulhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875–2895

    Article  Google Scholar 

  22. Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B, Modesti M (2013) Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stabil 98:2366–2374

    Article  Google Scholar 

  23. Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A (2012) Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame 159:3616–3623

    Article  Google Scholar 

  24. Schartel B, Weiss A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX (2011) Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol 22:1581–1592

    Article  Google Scholar 

  25. Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:19761–19781

    Article  Google Scholar 

  26. Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327

    Article  Google Scholar 

  27. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  28. Yuan BH, Bao CL, Qian XD, Wen PY, Xing WY, Song L, Hu Y (2014) A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater Res Bull 55:48–52

    Article  Google Scholar 

  29. Liang W, Chen X, Sa Y, Feng Y, Wang Y, Lin W (2012) Graphene oxide as a substrate for Raman enhancement. Appl Phys A 109:81–85

    Article  Google Scholar 

  30. León V, Quintana M, Herrero MA, Fierro JLG, Adl Hoz, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938

    Article  Google Scholar 

  31. Leon V, Rodriguez AM, Prieto P, Prato M, Vazquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8:563–571

    Article  Google Scholar 

  32. Yuan BH, Bao CL, Qian XD, Jiang SH, Wen PY, Xing WY, Song L, Liew KM, Hu Y (2014) Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res 53:1143–1149

    Article  Google Scholar 

  33. Costa L, Camino G (1988) Thermal-behavior of melamine. J Therm Anal 34:423–429

    Article  Google Scholar 

  34. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff’ RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    Article  Google Scholar 

  35. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    Article  Google Scholar 

  36. Yang S, Yue W, Huang D, Chen C, Lin H, Yang X (2012) A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv 2:8827–8832

    Article  Google Scholar 

  37. Gao J, Hu M, Dong Y, Li RKY (2013) Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties. ACS Appl Mater Interfaces 5:7758–7764

    Article  Google Scholar 

  38. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  Google Scholar 

  39. Sierra U, Álvarez P, Santamaría R, Granda M, Blanco C, Menéndez R (2014) A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets. Carbon 80:830–832

    Article  Google Scholar 

  40. Petit C, Bandosz TJ (2009) Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J Phys Chem C 113:3800–3809

    Article  Google Scholar 

  41. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    Article  Google Scholar 

  42. Zhai H-S, Cao L, Xia X-H (2013) Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin Chem Lett 24:103–106

    Article  Google Scholar 

  43. Sun H, Zhou G, Wang Y, Suvorova A, Wang S (2014) A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl Mater Interfaces 6:16745–16754

    Article  Google Scholar 

  44. Yuan B, Bao C, Qian X, Song L, Tai Q, Liew KM, Hu Y (2014) Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution. Carbon 75:178–189

    Article  Google Scholar 

  45. Hu SW, Yang LW, Tian Y, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl Catal B 163:611–622

    Article  Google Scholar 

  46. Xu H, Song Y, Song Y, Zhu J, Zhu T, Liu C, Zhao D, Zhang Q, Li H (2014) Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 4:34539–34547

    Article  Google Scholar 

  47. Li Y, Sun Y, Dong F, Ho W-K (2014) Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. J Colloid Interf Sci 436:29–36

    Article  Google Scholar 

  48. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  Google Scholar 

  49. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  Google Scholar 

  50. Liu L, Shi Y, Yu B, Tai Q, Wang B, Feng X, Liu H, Wen P, Yuan B, Hu Y (2015) Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Adv 5:11761–11765

    Article  Google Scholar 

  51. Ma HY, Tong LF, Xu ZB, Fang ZP (2007) Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18:375602

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research grants from the National Natural Science Foundation of China (Grant No. 21374111), the Natural Science Foundation of Jiangsu Province (Grant No. BK20130369), and the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 9042047, CityU 11208914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Sheng, H., Mu, X. et al. Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J Mater Sci 50, 5389–5401 (2015). https://doi.org/10.1007/s10853-015-9083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9083-0

Keywords

Navigation