Skip to main content
Log in

Preparation and characterization of mechanically and thermally enhanced polyimide/reactive halloysite nanotubes nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High modulus and thermal stability of polyimide (PI)/reactive halloysite nanotubes (HNTs) nanocomposites were prepared by in situ polymerization. The pristine HNTs were firstly handled with the tetraethoxysilane (TEOS) and secondly grafted with the silane agent. The fourier transform infrared spectroscopy (FTIR) approved that TEOS was beneficial for the silane agent to modify the HNTs. Scanning electron microscopy (SEM) showed the differences of the morphology between the reactive HNTs and pristine HNTs. PI/reactive HNTs nanocomposites exhibited lower moisture absorption than pure polyimide. The reactive HNTs reduced the transmittance of the nanocomposites. Significant improvements in the thermal stability and glass transition temperature (Tg) of PI/reactive HNTs nanocomposites were achieved by addition of only a small amount of reactive HNTs. It was noteworthy that both the tensile strength and Young’ modulus of PI/reactive HNTs nanocomposites were significantly enhanced. A 62.8 % increase in tensile strength and a 63.7 % increase in Young’ modulus of the nanocomposites with 3 wt.% of the reactive HNTs were achieved. Finally, the preparation mechanism to obtain PI/reactive HNTs nanocomposites was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos A Appl Sci Manuf 42(4):345–354

    Article  Google Scholar 

  2. Lin TF, Zhu LX, Chen T, Guo BC (2013) Optimization of mechanical performance of compatibilized polypropylene/poly(ethylene terephthalate) blends via selective dispersion of halloysite nanotubes in the blend. J Appl Polym Sci 129(1):47–56

    Article  CAS  Google Scholar 

  3. Qiu K, Netravali AN (2013) Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polym Compos 34(5):799–809

    Article  CAS  Google Scholar 

  4. Fréchet JMJ (2005) Functional polymers: from plastic electronics to polymer-assisted therapeutics. Prog Polym Sci 30(8–9):844–857

    Article  Google Scholar 

  5. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83

    Article  CAS  Google Scholar 

  6. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507

    Article  CAS  Google Scholar 

  7. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  Google Scholar 

  8. Zhao H, Shipp DA (2003) Preparation of poly (styrene-block-butyl acrylate) block copolymer- silicate nanocomposites. Chem Mater 15(14):2693–2695

    Article  CAS  Google Scholar 

  9. Janek M, Emmerich K, Heissler S, Nüesch R (2007) Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite. Chem Mater 19(4):684–693

    Article  CAS  Google Scholar 

  10. Letaïef S, Aranda P, Fernández-Saavedra R, Margeson JCJ, Detellier C, Ruiz-Hitzky E (2008) Poly (3, 4-ethylenedioxythiophene)–clay nanocomposites. J Mater Chem 18(19):2227–2233

    Article  Google Scholar 

  11. Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42(17):6588–6595

    Article  CAS  Google Scholar 

  12. Tunc S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48(3):414–424

    Article  CAS  Google Scholar 

  13. Mirabedini S, Behzadnasab M, Kabiri K (2012) Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos A Appl Sci Manuf 43(11):2095–2106

    Article  CAS  Google Scholar 

  14. Wheeler PA, Wang J, Mathias LJ (2006) Poly (methyl methacrylate)/laponite nanocomposites: exploring covalent and ionic clay modifications. Chem Mater 18(17):3937–3945

    Article  CAS  Google Scholar 

  15. Kuan HC, Chuang WP, Ma CCM, Chiang CL, Wu HL (2005) Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. J Mater Sci 40(1):179–185

    Article  CAS  Google Scholar 

  16. Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6(5):573–575

    Article  CAS  Google Scholar 

  17. Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11(7):1942–1947

    Article  CAS  Google Scholar 

  18. Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4(5):2699–2708

    Article  CAS  Google Scholar 

  19. Kumar M, Singh K, Dhawan SK, Tharanikkarasu K, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor. Chem Eng J 231:397–405

    Article  CAS  Google Scholar 

  20. Yang Y, Zhu Z, Yin J, Wang X, Ze Q (1999) Preparation and properties of hybrids of organo- soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer 40(15):4407–4414

    Article  CAS  Google Scholar 

  21. Zhang YH, Dang ZM, Fu SY, Xin JH, Deng JG, Wu J, Yang S, Li LF, Yan Q (2005) Dielectric and dynamic mechanical properties of polyimide–clay nanocomposite films. Chem Phys Lett 401(4):553–557

    Article  CAS  Google Scholar 

  22. Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3):548–554

    Article  CAS  Google Scholar 

  23. Morgan AB, Putthanarat S (2011) Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym Degrad Stab 96(1):23–32

    Article  CAS  Google Scholar 

  24. Marini J, Bretas RES (2013) Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites. Polym Eng Sci 53(7):1512–1528

    Article  CAS  Google Scholar 

  25. Zhu J, Guo N, Zhang Y, Yu L, Liu J (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4- styrenesulfonate) via surface-initiated ATRP. J Membr Sci 465:91–99

    Article  CAS  Google Scholar 

  26. Wu W, Cao XW, Luo J, He GJ, Zhang YJ (2014) Morphology, thermal, and mechanical properties of poly(butylene succinate) reinforced with halloysite nanotube. Polym Compos 35(5):847–855

    Article  CAS  Google Scholar 

  27. Marney DCO, Yang W, Russell LJ, Shen SZ, Nguyen T, Yuan Q, Varley R, Li S (2012) Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6. Polym Adv Technol 23(12):1564–1571

    Article  CAS  Google Scholar 

  28. Du M, Guo B, Liu M, Cai X, Jia D (2010) Reinforcing thermoplastics with hydrogen bonding bridged inorganics. Phys B Condens Matter 405(2):655–662

    Article  CAS  Google Scholar 

  29. Barrientos-Ramirez S, de Oca-Ramirez GM, Ramos-Fernandez EV, Sepulveda-Escribano A, Pastor-Blas MM, Gonzalez-Montiel A (2011) Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Appl Catal A Gen 406(1–2):22–33

    Article  CAS  Google Scholar 

  30. Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751

    Article  CAS  Google Scholar 

  31. Gu A, Kuo SW, Chang FC (2001) Syntheses and properties of PI/clay hybrids. J Appl Polym Sci 79(10):1902–1910

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the supports of the “National Youth Natural Science Foundation of China” (No. 21406247) and Wuhai Tian-yu Chemical High-tech Co. Ltd. (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuchen Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Lu, X., Wang, T. et al. Preparation and characterization of mechanically and thermally enhanced polyimide/reactive halloysite nanotubes nanocomposites. J Polym Res 22, 185 (2015). https://doi.org/10.1007/s10965-015-0806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0806-3

Keywords

Navigation