Skip to main content
Log in

In situ fabrication of MWCNTs reinforce dielectric performances of polyarylene ether nitrile nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, the dielectric properties of polyarylene ether nitrile (PEN)/multi-walled carbon nanotubes (MWCNTs) polymer composites were reinforced via in situ fabrication protocol for MWCNTs. The silanized MWCNTs were surface grafted with phenolphthalin (PPL), which is also one monomer involved in PEN synthesis. This is the premise for PPL can initiate cross-link behavior with the complex PEN and we called it as reactive MWCNTs. Therefore, the composite of PEN and reactive MWCNTs was readily fabricated by solution-casting method and the performance of this unique system was characterized by a range of different techniques. Fourier transform infrared spectroscopy confirmed that the MWCNTs have been bonded with PPL and silane functionalization agent. Based on the observation of scanning electron microscope, it was noted that the forming of reactive MWCNTs could improve the dispersion interfacial compatibility of PEN/MWCNTs nanocomposites. Consequently, the dielectric properties were improved, as lower dielectric loss and higher dielectric constant simultaneously obtained using reactive MWCNTs filler. Moreover, the results of thermal and mechanical performance tests provided additional evidences that the reactive MWCNTs synthesized via in situ fabrication can better reinforce PEN nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Babak, V.H. Michelle, L. Zhang, J.B. Michael, M. Harish, B. Behnam, NeuroImage 37, S9 (2007)

    Article  Google Scholar 

  2. X. Zhang, G. Wang, W. Zhang, W. Yan, B. Fang, Biosens. Bioelectron. 24, 3395 (2009)

    Article  Google Scholar 

  3. S. Thanyarat, C. Anon, S.K. Chaiyuth, P. Sirapat, T. Gamolwan, Diam. Relat. Mater. 18, 524 (2009)

    Article  Google Scholar 

  4. P. Calvert, Nature 399, 210 (1999)

    Article  Google Scholar 

  5. M. Feng, X. Huang, H. Tang, Z. Pu, X. Liu, J. Mate. Sci. Mater. Electron. 24, 3652 (2013)

    Article  Google Scholar 

  6. E.T. Thostenson, Z.F. Ren, T.W. Chou, Nanocomposites Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  7. Y. Rao, C. Wong, J. Appl. Polym. Sci. 92, 2228 (2004)

    Article  Google Scholar 

  8. H. Wang, W. Zhong, P. Xu, Q. Du, Macromol. Mater. Eng. 289, 793 (2004)

    Article  Google Scholar 

  9. L. Liu, Q. Lu, J. Yin, Z. Zhu, D. Pan, Z. Wang, Mater. Sci. Eng. C 22, 61 (2002)

    Article  Google Scholar 

  10. X. Huang, Z. Pu, L. Tong, Z. Wang, X. Liu, J. Mater. Sci. Mater. Electron. 23, 2089 (2012)

    Article  Google Scholar 

  11. L. Liu, J.C. Grunlan, Adv. Funct. Mater. 17, 2343 (2007)

    Article  Google Scholar 

  12. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 12, 750 (2000)

    Article  Google Scholar 

  13. B. Yang, K.P. Pramoda, G. Xu, S.H. Goh, Adv. Funct. Mater. 17, 2062 (2007)

    Article  Google Scholar 

  14. X. Liu, S. Long, D. Luo, W. Chen, G. Cao, Mater. Lett. 62, 19 (2008)

    Article  Google Scholar 

  15. S. Ganguli, H. Aglan, P. Denning, G. Irvin, J. Reinf. Plast. Compos. 25, 175 (2006)

    Article  Google Scholar 

  16. H. Xie, H. Lee, W. Youn, M. Choi, J. Appl. Phys. 94, 4967 (2003)

    Article  Google Scholar 

  17. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, Liu XB. J. Magn. Magn. Mater. 323, 1006 (2011)

    Article  Google Scholar 

  18. M. Pumera, B. Smíd, K. Veltruská, J. Nanosci. Nanotechnol. 9, 2671 (2009)

    Article  Google Scholar 

  19. H. Tang, J. Yang, J. Zhong, R. Zhao, X. Liu, Mater. Lett. 65, 2758 (2011)

    Article  Google Scholar 

  20. P. Ma, J.K. Kim, B. Tang, Carbon 44, 3232 (2006)

    Article  Google Scholar 

  21. H. Tang, J. Yang, J. Zhong, R. Zhao, X. Liu, Mater. Lett. 65, 1703 (2011)

    Article  Google Scholar 

  22. J. Yang, H. Tang, Y. Zhan, H. Guo, R. Zhao, X. Liu, Mater. Lett. 72, 42 (2012)

    Article  Google Scholar 

  23. M. Feng, X. Huang, H. Tang, X. Liu, Colloids Surf. A Physicochem. Eng. Asp. 441, 556 (2014)

    Article  Google Scholar 

  24. Y. Zhan, F. Meng, X. Yang, X. Liu, Colloids Surf. A Physicochem. Eng. Asp. 390, 112 (2011)

    Article  Google Scholar 

  25. T. Nakinpong, S. Bualeklimcharoen, A. Bhutton, O. Aungsupravate, T. Amorn-sakchai, J. Appl. Polym. Sci. 84, 561 (2002)

    Article  Google Scholar 

  26. X. Huang, Z. Pu, M. Feng, L. Tong, X. Liu, Mater. Lett. 96, 139 (2013)

    Article  Google Scholar 

  27. A. Ajji, J. Brisson, Y. Qu, J. Polym. Sci. Part B Polym. Phys. 30, 505 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank for financial support of this work from the National Natural Science Foundation (Nos. 51173021, 51373028, 51403029) and “863” National Major Program of High Technology (2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Jia or Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Jin, F., Huang, X. et al. In situ fabrication of MWCNTs reinforce dielectric performances of polyarylene ether nitrile nanocomposite. J Mater Sci: Mater Electron 26, 1–10 (2015). https://doi.org/10.1007/s10854-014-2355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2355-7

Keywords

Navigation