Skip to main content
Log in

Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel bio-adsorbent, composite hydrogel beads, composed of polyvinyl alcohol (PVA), chitosan (CS) and graphene oxide (GO) was prepared by an instantaneous gelation method. The micromorphology and thermal stability of the PVA/CS/GO hydrogel beads were characterized by scanning electronic microscope (SEM) and thermo gravimetric analysis (TGA) respectively. Adsorption of Cu(II) onto PVA/CS/GO hydrogel beads was investigated with respect to pH, initial concentration, temperature and adsorption time. Adsorption data were well matched by Langmuir isotherm and pseudo-second-order kinetic model at the optimum pH 5.5. The maximum adsorption capacities of PVA/CS/GO hydrogel beads were found to be 162 mg g−1 for Cu(II) at 30 °C, which was much higher than that of PVA/CS hydrogel. Thermodynamic studies indicated that the adsorption was spontaneous and endothermic process in nature. Besides, desorption efficiency and reusability of the adsorbents were assessed on basis of six consecutive adsorption-desorption cycles. Based on these studies, it can be seen that PVA/CS/GO hydrogel beads will be a potential recyclable adsorbent for removal of hazardous metal ions in waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Q, Gao Y, Zhai YA, Liu FQ, Gao G (2008) Carbohydr Polym 73:359–363

    Article  CAS  Google Scholar 

  2. Brower JB, Ryan RL, Pazirandeh M (1997) Environ Sci Technol 31:2910–2914

    Article  CAS  Google Scholar 

  3. Amjal M, Khan AH, Ahmad S (1998) Water Res 32:3085–3091

    Article  Google Scholar 

  4. Li N, Bai N (2005) Sep Purif Technol 45:237–247

    Article  Google Scholar 

  5. Zeng X, Ruckenstein E (1998) J Membr Sci 148(2):195–205

    Article  CAS  Google Scholar 

  6. Garg VK, Gupta R, Yadav AB, Kumar R (2003) Bioresour Technol 89:121–124

    Article  CAS  Google Scholar 

  7. Allen SJ, McKay G, Porter JF (2004) J Colloid Interface Sci 280(2):322–333

    Article  CAS  Google Scholar 

  8. Yi JZ, Zhang LM (2008) Bioresour Technol 99:2182–2186

    Article  CAS  Google Scholar 

  9. Akkaya R, Ulusoy U (2008) J Hazard Mater 151:380–388

    Article  CAS  Google Scholar 

  10. Li A, Zhang JP, Wang AQ (2007) Bioresour Technol 98:327–332

    Article  CAS  Google Scholar 

  11. Yao QX, Xie JJ, Liu JX, Kang HM, Liu Y (2014) J Polym Res 21:465

    Article  Google Scholar 

  12. Wang WB, Kang YR, Wang AQ (2013) J Polym Res 20:101

    Article  Google Scholar 

  13. Liu DG, Li ZH, Ma ZS (2013) Ind Eng Chem Res 52:11036–11044

    Article  CAS  Google Scholar 

  14. Cathell MD, Szewczyk JC, Bui FA, Weber CA, Wolever JD, Kang J, Schauer CL (2008) Biomacromolecules 9:289–295

    Article  CAS  Google Scholar 

  15. Pandey S, Mishra SB (2011) J Colloid Interface Sci 361:509–520

    Article  CAS  Google Scholar 

  16. Li H, Bi S, Liu L, Dong W, Wang X (2011) Desalination 278:397–404

    Article  CAS  Google Scholar 

  17. Fan L, Luo C, Lv Z, Lu F, Qiu H (2011) J Hazard Mater 194:193–201

    Article  CAS  Google Scholar 

  18. Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Chem Commun 48:7350–7352

    Article  CAS  Google Scholar 

  19. Shen C, Wang YJ, Xu JH, Luo GS (2013) Chem Eng J 229:217–224

    Article  CAS  Google Scholar 

  20. Pongjanyakul T, Priprem A, Puttipipatkhachorn S (2005) J Control Release 107:343–356

    Article  CAS  Google Scholar 

  21. Wu TM, Wu CY (2006) Polym Degrad Stab 91:2198–2204

    Article  CAS  Google Scholar 

  22. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Polym Degrad Stab 90:123–131

    Article  CAS  Google Scholar 

  23. Saravanan D, Gomathi T, Sudha PN (2013) Int J Biol Macromol 53:67–71

    Article  CAS  Google Scholar 

  24. Nesic AR, Velickovic SJ, Antonovic DG (2012) J Hazard Mater 209–210:256–263

    Article  Google Scholar 

  25. Xu D, Wu K, Zhang Q, Hu H, Xi K, Chen Q, Yu X, Chen J, Jia X (2010) Polymer 51:1926–1933

    Article  CAS  Google Scholar 

  26. Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Bioresour Technol 105:24–30

    Article  CAS  Google Scholar 

  27. Sobahi TR, Makki MSI, Abdelaal MY (2013) J Saudi Chem Soc 17:245–250

    Article  CAS  Google Scholar 

  28. Li XL, Li YF, Zhang SD, Ye ZF (2012) Chem Eng J 183:88–97

    Article  CAS  Google Scholar 

  29. Chen CH, Wang FY, Mao CF, Yang CH (2007) J Appl Polym Sci 105:1086–1092

    Article  CAS  Google Scholar 

  30. Kumar K, Tripathi BP, Shahi VK (2009) J Hazard Mater 172:1041–1048

    Article  CAS  Google Scholar 

  31. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228

    Article  CAS  Google Scholar 

  32. Madadrang CJ, Kim HY, Gao GH, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou SF (2012) ACS Appl Mater Interfaces 4:1186–1193

    Article  CAS  Google Scholar 

  33. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  34. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 8:4806–4814

    Article  Google Scholar 

  35. Zhang J, Zhang CQ, Madbouly SA (2015) J Appl Polym Sci 132:41751

    Google Scholar 

  36. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) ACS Nano 2:463–470

    Article  CAS  Google Scholar 

  37. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  38. Sankararamakrishnan N, Sharma AK, Sanghi R (2007) J Hazard Mater 148:353–359

    Article  CAS  Google Scholar 

  39. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  40. Freundlich H (1932) Trans Faraday Soc 28:195–201

    Article  CAS  Google Scholar 

  41. Aksu Z, Tunc O (2005) Process Biochem 40:831–847

    Article  CAS  Google Scholar 

  42. Treybal RE. (1981) Mass-Transfer Operations third ed, McGraw-Hill.

  43. Salehi E, Madaeni SS, Rajabi L, Vatanpour V, Derakhshan AA, Zinadini S, Ghorabi S, Ahmadi Monfared H (2012) Sep Purif Technol 89:309–319

    Article  CAS  Google Scholar 

  44. Lia XL, Lia YF, Ye ZF (2011) Chem Eng J 178:60–68

    Article  Google Scholar 

  45. Hu X, Wang J, Liu Y, Li X, Zeng G, Bao Z, Zeng X, Chen A, Long F (2011) J Hazard Mater 185:306–314

    Article  CAS  Google Scholar 

  46. Li XL, Qi YX, Li YF, Zhang Y, He XH, Wang YH (2013) Bioresour Technol 142:611–619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Project of Chinese Ministry of Education (No.113034A), National Natural Science Foundation of China (51373070), Program for New Century Excellent Talents in University (NCET-12-0884).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifu Dong or Mingqing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, Z., Ma, P. et al. Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22, 150 (2015). https://doi.org/10.1007/s10965-015-0794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0794-3

Keywords

Navigation