Skip to main content
Log in

Prediction of the Q-e parameters from structures of transfer chain agents

  • Short Communication
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The empirical parameters of copolymerization Q-e have been examined as an endpoint for establishing the quantitative structure – property relationships (QSPRs). The possibility to build up QSPR for these parameters is demonstrated for 22 transfer chain agents. Data for 20 taken in the literature and two were investigated in direct experiment. The statistical qualities of the models for parameter e together with the negative decimal logarithm of Q × 10−4 (pQ) are quite good. The mechanistic interpretation for these models are suggested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Duchowicz PR, Fioressi SE, Bacelo DE, Saavedra LM, Toropova AP, Toropov AA (2015) QSPR Studies on Refractive Indices of Structurally Heterogeneous Polymers. Chemometr Intell Lab Syst 140:86–91

    Article  CAS  Google Scholar 

  2. Wu Y, Zhuang L, Ma B, Chen S, Xu X, Zeng Y (2014) Preparation of a surface molecularly imprinted fiber for bisphenol a recognition. J Polym Res 21(6):468

    Article  Google Scholar 

  3. Neela V, Von Solms N (2014) Permeability, diffusivity and solubility of carbon dioxide in fluoropolymers: an experimental and modeling study. J Polym Res 21(4):401

    Article  Google Scholar 

  4. Wang Z, Zhang Q, Zhan X, Chen F, Rao G, Xiong J (2013) Preparation, kinetics and microstructures of well-defined PS-b-PS/Bd diblock copolymers via RAFT miniemulsion polymerization. J Polym Res 20(11):288

    Article  CAS  Google Scholar 

  5. Rostamiyan Y, Fereidoon AB, Hamed Mashhadzadeh A, Khalili MA (2013) Augmenting epoxy toughness by combination of both thermoplastic and nanolayered materials and using artificial intelligence techniques for modeling and optimization. J Polym Res 20(6):135

    Article  Google Scholar 

  6. Zhuang Y, Gu Y (2012) Probing structural evolution of the poly(amic acid) containing benzoxazole moieties in backbone during thermal imidization. J Polym Res 19(11):14

    Article  Google Scholar 

  7. Sultan SR, Fernando WJN, Sata SA (2012) Multiscale modeling of syndiospecific styrene polymerization. J Polym Res 19(3):9778

    Article  Google Scholar 

  8. Rivero P, Herrera R (2011) Modeling the kinetics of anionic polymerization in cyclohexane as a non-complexing solvent. J Polym Res 18(4):519–526

    Article  CAS  Google Scholar 

  9. Matos I, Ascenso JR, Lemos M, Fan Z, Yuan J, Farinha JPS, Lemos F, Gonçalves Da Silva AMPS, Marques MM (2013) Structure, morphology and interfacial behaviour of ethylene/methacrylate copolymers. J Polym Res 20(3):90

    Article  Google Scholar 

  10. Gao F, Zhou Q, Dong Y, Qin Y, Wang X, Xiaojiang Z, Fosong W (2012) Ether linkage in poly(1,2-propylene carbonate), a key structure factor to tune its performances. J Polym Res 19(5):9877

    Article  Google Scholar 

  11. Katritzky AR, Stoyanova-Slavova IB, Dobchev DA, Karelson M (2007) QSPR modeling of flash points: an update. J Mol Graphics Modell 26:529–536

    Article  CAS  Google Scholar 

  12. Roy K, Kabir H (2013) QSPR with extended topochemical atom (ETA) indices: exploring effects of hydrophobicity, branching and electronic parameters on logCMC values of anionic surfactants. Chem Eng Sci 87:141–151

    Article  CAS  Google Scholar 

  13. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D (2011) QSPR approach for determination of parachor of nonelectrolyte organic compounds. Chem Eng Sci 66:2959–2967

    Article  CAS  Google Scholar 

  14. Chandola M, Marathe S (2008) A QSPR for the plasticization efficiency of polyvinylchloride plasticizers. J Mol Graphics Modell 26:824–828

    Article  CAS  Google Scholar 

  15. Xu J, Liu L, Xu W, Zhao S, Zuo D (2007) A general QSPR model for the prediction of Ө (lower critical solution temperature) in polymer solutions with topological indices. J Mol Graphics Modell 26:352–359

    Article  CAS  Google Scholar 

  16. Palomba D, Vazquez GE, Díaza MF (2012) Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures. J Mol Graphics Modell 38:137–147

    Article  CAS  Google Scholar 

  17. Alfrey T, Price CC (1996) Relative reactivities in vinyl copolymerization. J Polym Sci Part A: Polym Chem 34:157–162

    Article  CAS  Google Scholar 

  18. Toropov AA, Kudyshkin VO, Voropaeva NL, Ruban IN, Rashidova SS (2004) QSPR modeling of the reactivity parameters of monomers in radical copolymerizations. J Struct Chem 45:945–950

    Article  CAS  Google Scholar 

  19. Yu X, Yi B, Wang X (2008) Quantitative structure–property relationships for the reactivity parameters of acrylate monomers. Eur Polym J 44:3997–4001

    Article  CAS  Google Scholar 

  20. Yu X, Wang X, Chen J (2011) Support vector machine regression for reactivity parameters of vinyl monomers. J Chil Chem Soc 56:746–751

    Article  CAS  Google Scholar 

  21. Greenly R (1980) An expanded listing of revised Q and e values. J Macromol Sci Chem A14:427–443

    Article  Google Scholar 

  22. Toropova AP, Toropov AA, Kudyshkin VO, Leszczynska D, Leszczynski J (2014) Optimal descriptors as a tool to predict the thermal decomposition of polymers. J Math Chem 52:1171–1181

    Article  CAS  Google Scholar 

  23. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  24. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29:97–101

    Article  CAS  Google Scholar 

  25. Weininger D (1990) Smiles. 3. Depict. Graphical depiction of chemical structures. J Chem Inf Comput Sci 30:237–243

    Article  CAS  Google Scholar 

  26. ACD/ChemSketch Freeware, version 11.00 (2007) Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com

  27. Kudyshkin VO, Vokhidova NR, Bozorov NI, Sidorenko OE, Ruban IN, Voropaeva NL, Rashidova SS (2004) Use of allylbenzene and allyl phenyl ether as chain-transfer agents in radical polymerization. Russ J Appl Chem 77:994–997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank EC project PreNanoTox (Contract309666), the EC project NanoPUZZLES (ProjectReference:309837), the EU project PROSIL funded under the LIFE program (project LIFE 12 ENV/IT/000154), and the EC Project MODERN (Contract 309314) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Toropov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, A.P., Toropov, A.A., Kudyshkin, V.O. et al. Prediction of the Q-e parameters from structures of transfer chain agents. J Polym Res 22, 128 (2015). https://doi.org/10.1007/s10965-015-0778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0778-3

Keywords

Navigation