Skip to main content
Log in

Highly conductive Poly(L-lactic acid) composites obtained via in situ expansion of graphite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, highly electrically and thermally conductive biopolymer composites were prepared by low-temperature expandable graphite (EG) filling Poly(L-lactic acid) (PLLA) via an in situ exfoliation melt blending process. The electrical conductivity of the composites with various graphite contents was measured by a four-point probe resistivity determiner and a high value of 0.37 S/cm was obtained at 70 wt.% EG content. A hot-disk method was used to evaluate the thermal conductivity of the composites. At EG loading fraction of 70%, thermal conductivity of PLLA/EG composites reached to the highest 26.87 W/mK, which is 100 times higher than neat PLLA. The electrical percolation was observed in the vicinity of the thermal percolation threshold concentration. The expansion of EG was crucial to the overall conductivity of the blends, which was confirmed by X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). Dynamic rheology analysis was applied to study the structural change by the interconnection of the exfoliated graphite flakes and the formation of the networks in the blends. Thermogravimetric analysis (TGA) was employed to determine the thermal properties of the investigated PLLA/EG composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chang J, Ho A, Chin WK (2007) J Polym Sci Part B Polym Phys 45:322–329

    Article  CAS  Google Scholar 

  2. Luo Y, Liu Y, Yu Q (2007) Thin Solid Films 515:4016–4023

    Article  CAS  Google Scholar 

  3. Zhou S, Chen Y, Zou H, Liang M (2013) Thermochim Acta 566:84–91

    Article  CAS  Google Scholar 

  4. Zhou S, Lei Y, Zou H, Liang M (2013) Polym Compos 34:1816–1823

    Article  CAS  Google Scholar 

  5. Kasgoz A, Akın D, Durmus A (2012) Polym Eng Sci 52:2645–2653

    Article  CAS  Google Scholar 

  6. Han Z, Fina A (2011) Prog Polym Sci 36:914–944

    Article  CAS  Google Scholar 

  7. Narkis M, Ram A, Flashner F (1978) Polym Eng Sci 18:649–653

    Article  CAS  Google Scholar 

  8. Dai K, Xu XB, Li ZM (2007) Polymer 48:849–859

    Article  CAS  Google Scholar 

  9. Zribi K, Feller JF, Elleuch K, Bourmaud A, Elleuch B (2006) Polym Adv Technol 17:727–731

    Article  CAS  Google Scholar 

  10. Jouni M, Boudenne A, Boiteux G, Massardier V, Garnier B, Serghei A (2013) Polym Compos 34:778–786

    Article  CAS  Google Scholar 

  11. Wu X, Qi S, He J, Chen B, Duan G (2010) J Polym Res 17:751–757

    Article  CAS  Google Scholar 

  12. Agari Y, Ueda A, Nagai S (1994) J Appl Polym Sci 52:1223–1231

    Article  CAS  Google Scholar 

  13. Shi SL, Zhang LZ, Li JS (2009) J Polym Res 16:395–399

    Article  CAS  Google Scholar 

  14. Kim DJ, Seo KH, Hong KH, Kim SY (1999) Polym Eng Sci 39:500–507

    Article  CAS  Google Scholar 

  15. Yi XS, Zhang JF, Zheng Q, Pan Y (2000) J Appl Polym Sci 77:494–499

    Article  CAS  Google Scholar 

  16. Xue B, Feng T, Zhou S, Bao J (2014) J Poly Res 21:1–8

    Article  CAS  Google Scholar 

  17. Gao JF, Yan DX, Huang HD, Zeng XB, Zhang WQ, Li ZM (2011) J Polym Res 18:2239–2243

    Article  CAS  Google Scholar 

  18. Saleem A, Frormann L, Iqbal A (2007) J Polym Res 14:121–127

    Article  CAS  Google Scholar 

  19. McCullen SD, Stano KL, Stevens DR, Roberts WA, Monteiro-Riviere NA, Clarke LI, Gorga RE (2007) J Appl Polym Sci 105:1668–1678

    Article  CAS  Google Scholar 

  20. Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B (2008) Polymer 49:3500–3509

    Article  CAS  Google Scholar 

  21. Fina A, Han Z, Saracco G, Gross U, Mainil M (2012) Polym Adv Technol 53:2412–2421

    Google Scholar 

  22. Uhl FM, Yao Q, Wilkie CA (2005) Polym Adv Technol 16:533–540

    Article  CAS  Google Scholar 

  23. Lee Y, Kim D, Seo J, Han H, Khan SB (2013) Polym Int 62:1386–1394

    Article  CAS  Google Scholar 

  24. Pan YX, Yu ZZ, Ou YC, Hu GH (2000) J Polym Sci Part B Polym Phys 38:1626–1633

    Article  CAS  Google Scholar 

  25. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Compos Sci Technol 67:2528–2534

    Article  CAS  Google Scholar 

  26. Liu X, Wu Q (2002) Eur Polym J 38:1383–1389

    Article  CAS  Google Scholar 

  27. Chiu HT, Hsiao YK (2006) J Polym Res 13:153–160

    Article  CAS  Google Scholar 

  28. Yu J, Wang N, Ma X (2008) Biomacromolecules 9:1050–1057

    Article  CAS  Google Scholar 

  29. Vainionpää S, Rokkanen P, Törmälä P (1989) Prog Polym Sci 14:679–716

    Article  Google Scholar 

  30. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Polym Rev 45:325–349

    Google Scholar 

  31. He F, Li S, Vert M, Zhuo R (2003) Polymer 44:5145–5151

    Article  CAS  Google Scholar 

  32. Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Biomaterials 8:311–314

    Article  CAS  Google Scholar 

  33. Kricheldorf HR, Boettcher C, Tönnes KU (1992) Polymer 33:2817–2824

    Article  CAS  Google Scholar 

  34. Lunt J (1998) Polym Degrad Stabil 59:145–152

    Article  CAS  Google Scholar 

  35. Bos RRM, Rozema FB, Boering G, Nijenhius AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HWB (1991) Biomaterials 12:32–36

    Article  CAS  Google Scholar 

  36. Penning JP, Dijkstra H, Pennings AJ (1993) Polymer 34:942–951

    Article  CAS  Google Scholar 

  37. Penning JP, Grijpma DW, Pennings AJ (1993) J Mater Sci Lett 12:1048–1051

    Article  CAS  Google Scholar 

  38. Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C (1997) Polymer 38:79–85

    Article  CAS  Google Scholar 

  39. Chen Y, Zou H, Liang M, Liu P (2013) J Appl Polym Sci 129:945–953

    Article  CAS  Google Scholar 

  40. Ling W, Gu A, Liang G, Yuan L (2010) Polym Compos 31:307–313

    CAS  Google Scholar 

  41. Yasmin A, Luo JJ, Daniel IM (2006) Compos Sci Technol 66:1182–1189

    Article  CAS  Google Scholar 

  42. Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA (2005) Polym Degrad Stabil 89:70–84

    Article  CAS  Google Scholar 

  43. Ying Z, Lin X, Qi Y, Luo J (2008) Mater Res Bull 43:2677–2686

    Article  CAS  Google Scholar 

  44. Pötschke P, Fornes TD, Paul DR (2002) Polymer 43:3247–3255

    Article  Google Scholar 

  45. Miyata T, Masuko T (1997) Polymer 38:4003–4009

    Article  CAS  Google Scholar 

  46. King JA, Jhonson BA, Via MD, Ciarkowski CJ (2010) Polym Compos 31:497–506

    CAS  Google Scholar 

  47. Kasgoz A, Akın D, Durmus A (2012) Polym Eng Sci 52:2645–2653

    Article  CAS  Google Scholar 

  48. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Compos Sci Technol 67:2528–2534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the Analytical and Testing Center of Sichuan University for providing dynamic rheological tests and SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Ye, J. & Zhang, J. Highly conductive Poly(L-lactic acid) composites obtained via in situ expansion of graphite. J Polym Res 22, 112 (2015). https://doi.org/10.1007/s10965-015-0755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0755-x

Keywords

Navigation