Skip to main content
Log in

The effect of soft segment on the microstructure and mechanical properties of waterborne UV-curable polyurethane/silica nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Waterborne UV-curable polyurethane (WUPU)/silica nanocomposites were prepared using various types of polyol (PCL, PBA, and PCD) by phase-inversion emulsification. The PCL-WUPU nanocomposite dispersion exhibited larger particles and higher viscosity than the PBA-WUPU and PCD-WUPU nanocomposite dispersions. The TEM analysis indicated that many small silica clusters and a few big silica clusters were distributed in the PCL-WUPU matrix, whereas the silica nanoparticles and the continuous silica network were homogeneously dispersed in the PBA-WUPU and PCD-WUPU matrix, respectively. The DMA analysis demonstrated that the broadening of the tanδ peaks or breadth of segmental motion at lower or higher temperatures were observed for WUPU nanocomposite films, suggesting the different interaction between WUPU and silica. The WUPU nanocomposite films showed increased the storage modulus, Young’ modulus, and tensile strength. But for toughness, the PCL-WUPU nanocomposite film exhibited higher improvement than PBA-WUPU and PCD-WUPU due to the silica nanoparticles preferentially, but not exclusively interaction with the hard segment of WUPU. This study provides clues for exploiting silica-polyurethane interactions to control the silica nanoparticles dispersion and tune material properties without surface modification of silica nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu JC, Rong XS, Chi TY, Wang M, Wang YY, Yang DY, Qiu FX (2013) Preparation, characterization of UV-curable waterborne polyurethane-acrylate and the application in metal iron surface protection. J Appl Polym Sci 130:3142–3152

    Article  CAS  Google Scholar 

  2. Li KB, Shen YD, Fei GQ, Wang HH, Wang C (2015) The Effect of PETA/PETTA composite system on the performance of UV curable waterborne polyurethane acrylate. J Appl Polym Sci 132:41262–41270

    Google Scholar 

  3. Rengasamy S, Mannari V (2014) UV-curable PUDs based on sustainable acrylated polyol: Study of their hydrophobic and oleophobic properties. Prog Org Coat 77:557–567

    Article  CAS  Google Scholar 

  4. Liu T, Pan XM, Wu YP, Zhang T, Zheng ZH, Ding XB, Peng YX (2012) Synthesis and characterization of UV-curable waterborne polyurethane acrylate possessing perfluorooctanoate side-chains. J Polym Res 19:9741–9749

    Article  Google Scholar 

  5. Tielemans M, Roose P, Ngo C, Lazzaroni R, Leclère P (2012) Multiphase coatings from complex radiation curable polyurethane dispersions. Prog Org Coat 75:560–568

    Article  CAS  Google Scholar 

  6. Hwanga HD, Parka CH, Moona JI, Kima HJ, Masubuchib T (2011) UV-curing behavior and physical properties of waterborne UV-curable polycarbonate-based polyurethane dispersion. Prog Org Coat 72:663–675

    Article  Google Scholar 

  7. Jang ES, Khan SB, Seo J, Nam YH, Choi WJ, Akhtar K, Han H (2011) Synthesis and characterization of novel UV-curable polyurethane-clay nanohybrid: influence of organically modified layered silicates on the properties of polyurethane. Prog Org Coat 71:36–42

    Article  CAS  Google Scholar 

  8. Lee HT, Lin LH (2006) Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39:6133–6141

    Article  CAS  Google Scholar 

  9. Zhang L, GuoZhangH J, Zhang H (2012) Synthesis and properties of UV-Curable polyester-based waterborne polyurethane/functionalized silica composites and morphology of their nanostructured films. Ind Eng Chem Res 51:8434–8441

    Article  CAS  Google Scholar 

  10. Yang CH, Liao WT (2006) Hybrids of colloidal silica and waterborne polyurethane. J Colloid Interf Sci 302:123–132

    Article  CAS  Google Scholar 

  11. Kim BS, Park SH, Kim BK (2006) Nanosilica-reinforced UV-cured polyurethane dispersion. Colloid Polym Sci 284:1067–1072

    Article  CAS  Google Scholar 

  12. Jeona HT, Janga MK, Kima BK, Kimb KH (2007) Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process. Colloid Surf A: Phys Eng Asp 302:559–567

    Article  Google Scholar 

  13. Sardon H, Irusta L, Aguirresarobe RH, Fernández-Berridi MJ (2014) Polymer/silica nanohybrids by means of tetraethoxysilane sol-gel condensation onto waterborne polyurethane particles. Prog Org Coat 77:1436–1442

    Article  CAS  Google Scholar 

  14. Wang G, Ma GZ, Hou CY, Guan TT, Ling LX, Wang BJ (2014) Preparation and properties of waterborne polyurethane/nanosilica composites: a diol as extender with triethoxysilane group. J Appl Polym Sci 131:40526–40533

    Google Scholar 

  15. Sowa C, Riedla B, Blancheta P (2011) UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. J Coat Technol Res 8:211–221

    Article  Google Scholar 

  16. Zhang SW, Liu R, Jiang JQ, Yang C, Chen MQ, Liu XY (2011) Facile synthesis waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog Org Coat 70:1–7

    Article  CAS  Google Scholar 

  17. Won J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci: Polym Chem 43:3973–3985

    Article  Google Scholar 

  18. Cai DY, Song M (2007) Water-based polyurethane filled with multi-walled carbon nanotubes prepared by a colloidal-physics method. Macromol Chem Phys 208:1183–1189

    Article  CAS  Google Scholar 

  19. Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2006) Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 39:7037–7043

    Article  CAS  Google Scholar 

  20. Turri S, Levi M (2005) Structure, dynamic properties, and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomericsilsesquioxanes. Macromolecules 38:5569–5574

    Article  CAS  Google Scholar 

  21. Awad S, Chen HM, Chen GD, Gu XH, Lee JL, Hady EEA, Jean YC (2011) Free volumes, glass transitions, and cross-links in Zinc oxide/waterborne polyurethane nanocomposites. Macromolecules 44:29–38

    Article  CAS  Google Scholar 

  22. Cao XD, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145

    Article  CAS  Google Scholar 

  23. Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR (2008) Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49:1860–1870

    Article  CAS  Google Scholar 

  24. Finnigan B, Martin D, Halley P, Truss R, Campbell K (2004) Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 45:2249–2260

    Article  CAS  Google Scholar 

  25. Korley LTJ, Liff SM, Kumar N, McKinley GH, Hammond PT (2006) Preferential association of segment blocks in polyurethane nanocomposites. Macromolecules 39:7030–7036

    Article  CAS  Google Scholar 

  26. Goda H, Frank CW (2001) Fluorescence studies of the hybrid composite of segmented-polyurethane and silica. Chem Mater 13:2783–2787

    Article  CAS  Google Scholar 

  27. Huang MM, Dong X, Gao YY, Xing Q, Li WL, Wang DJ (2014) Probing the structure evolution/orientation induced by interaction between polyurethane segments and SiO2 surface in shape memory process. Polymer 16:4289–4298

    Article  Google Scholar 

  28. Lahorija B, Goran B, Mirela L, Emi GB (2010) Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane-silica nanocomposites. Eur Polym J 46:1975–1987

    Article  Google Scholar 

  29. Lahorija B, Goran B, Mirela L, Emi GB (2011) Hydrogen bonding in polyurethane-silica nanocomposites. Macromol Symp 305:126–131

    Article  Google Scholar 

  30. Castelvetro V, Vita CD (2004) Nanostructured hybrid materials from aqueous polymer dispersions. Adv Colloid Interf 108:167–185

    Article  Google Scholar 

  31. Yang ZZ, Qiu D, Li J (2002) Waterborne dispersions of a polymer encapsulated inorganic particle nanocomposite by phase-inversion emulsification. Macromol Rapid Commun 23:479–483

    Article  CAS  Google Scholar 

  32. Bansal A, Yang H, Li CZ et al (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693–698

    Article  CAS  Google Scholar 

  33. Akcora P, Kumar SK, Sakai VG, Li Y, Benicewicz BC, Schadler LS (2010) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43:8275–8281

    Article  CAS  Google Scholar 

  34. Yang AH, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermochemical properties of polymer nanocomposites by tailoring the polymer-particle interface. J Polym Sci Part A: Polymer Chem 44:2944–2950

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the National Nature Science Foundation (No. 51003041) of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, J., Han, D. et al. The effect of soft segment on the microstructure and mechanical properties of waterborne UV-curable polyurethane/silica nanocomposites. J Polym Res 22, 106 (2015). https://doi.org/10.1007/s10965-015-0748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0748-9

Keywords

Navigation