Skip to main content

Advertisement

Log in

Solution properties of amphoteric macromolecular dyes derived from poly(acrylamide-co-vinylamine)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Amphoteric macromolecular (AM) dyes with different degrees of substitution were synthesized by grafting a poly(acrylamide-co-vinylamine) oligomer with reactive dye. Solution properties of these AM dyes were measured as functions of pH, salt content, the degree of substitution, and concentration of AM dye solutions. The results of the potentiometric and conductometric titrations showed that the first transition at pH ∼10.5 corresponds to the onset of protonation of primary amino groups of AM dyes. and the second transition at pH ∼2.5 corresponds to the end of protonation of the primary amino groups. The results of the solubility behavior and zeta potential experiment exhibited that the AM dyes are precipitated near the isoelectric point, and the soluble pH region of the AM dyes can be controlled by changing the ratio of amino to sulfonate groups in these dyes. The viscosity behaviors exhibited that these AM dyes possessed low viscosity, only several mPa⋅s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dawson DJ, Gless RD, Wingard RE Jr (1976) Poly(vinylamine hydrochloride): synthesis and utilization for the preparation of water-soluble polymeric dyes. J Am Chem Soc 98:5996–6000

    Article  CAS  Google Scholar 

  2. Varnavski O, Ispasoiu RG, Narewal M, Fugaro J, Jin Y, Pass H, Goodson T (2000) Nonlinear optical properties of water-soluble polymeric dyes with biological applications. Macromolecules 33:4061–4068

    Article  CAS  Google Scholar 

  3. Tang Y, Zhang S, Yang J, Tang B (2006) Synthesis of a new, yellow crosslinking polyvinylamine dye and its crosslinking/dyeing process through a crosslinker. J Appl Polym Sci 102:1568–1573

    Article  CAS  Google Scholar 

  4. Dawson DJ, Otteson KM, Wang PC, Wingard RE Jr (1978) Utilization of water-insoluble chromophores in water-soluble polymeric dyes. Macromolecules 11:320–324

    Article  CAS  Google Scholar 

  5. Roth I, Jbarah AA, Holze R, Friedrich M, Spange S (2006) 2-Nitro-1, 4-diaminobenzene-functionalized poly(vinyl amine)s as water-soluble UV–Vis-Sensitive pH sensors. Macromol Rapid Commun 27:193–199

    Article  CAS  Google Scholar 

  6. Tang B, Zhang S, Yang J, Liu F (2006) Synthesis of a novel water-soluble crosslinking polymeric dye with good dyeing properties. Dyes Pig 68:69–73

    Article  CAS  Google Scholar 

  7. Li Y, Zhang S, Yang J, Jiang S, Li Q (2008) Synthesis and application of novel crosslinking polyamine dyes with good dyeing performance. Dyes Pig 76:508–514

    Article  CAS  Google Scholar 

  8. Li Y, Tang Y, Zhang S, Yang J (2007) Synthesis and application of crosslinking blue anthraquinone polyamine dye with high fixation. Text Res J 77:703–709

    Article  CAS  Google Scholar 

  9. Zhang SF, Tang BT, Yang JJ, Tang YF, Ma W (2013) Crosslinking dyes, Kirt-Othmer encyclopedia of chemical technology: 1–45

  10. Tang Y, Li Y, Zhang S, Yang J, Dang N, Liang X (2006) Fixation of a tetraethylene pentamine dye on cotton and silk by bifunctional crosslinkers. Color Technol 122:82–85

    Article  CAS  Google Scholar 

  11. Mao M, Turner SR (2007) Aggregation of rod − coil block copolymers containing rigid polyampholyte blocks in aqueous solution [J]. J Am Chem Soc 129:3832–3833

    Article  CAS  Google Scholar 

  12. Tan BH, Ravi P, Tan LN, Tam KC (2007) Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels. J Colloid Interface Sci 309:453–463

    Article  CAS  Google Scholar 

  13. Che Y, Tan Y, Cao J, Guiying X (2010) A study of aggregation behavior of a sulfobetaine copolymer in dilute solution. J Polym Res 17:557–566

    Article  CAS  Google Scholar 

  14. Ronglan W, Shimei X, Huang X, Cao L, Feng S, Wang J (2006) Swelling behaviors of a new zwitterionic N-carboxymethyl-N, N-dimethyl-N-allylammonium/acrylic acid hydrogel. J Polym Res 13:33–37

    Article  Google Scholar 

  15. Xiong ZY, Peng BL, Han X, Peng CJ, Liu HL, Hu Y (2011) Dual-stimuli responsive behaviors of diblock polyampholyte PDMAEMA-b-PAA in aqueous solution. J Colloid Interface Sci 356:557–565

    Article  CAS  Google Scholar 

  16. Chen W, Pelton R, Leung V (2009) Solution properties of polyvinylamine derivatized with phenylboronic acid. Macromolecules 42:1300–1305

    Article  CAS  Google Scholar 

  17. El-Molla MM (2007) Synthesis of polyurethane acrylate oligomers as aqueous UV-curable binder for inks of ink jet in textile printing and pigment dyeing. Dyes Pig 74:371–379

    Article  CAS  Google Scholar 

  18. Karanikas EK, Nikolaidis NF, Tsatsaroni EG (2012) Synthesis, characterization, and application of hetarylazo disperse colorants: preparation and properties of ink-jet inks with active agents for polyester printing. J Appl Polym Sci 125:3396–3403

    Article  CAS  Google Scholar 

  19. Shaohai F, Changsen D, Zhang K, Wang C (2011) Colloidal properties of copolymer-encapsulated and surface-modified pigment dispersion and its application in inkjet printing inks. J Appl Polym Sci 119:371–376

    Article  Google Scholar 

  20. El Achari A, Coqueret X, Lablache-Combier A, Loucheux C (1993) Preparation of polyvinylamine from polyacrylamide: a reinvestigation of the hofmann reaction. Die Makromolekulare Chemie 194:1879–1891

    Article  Google Scholar 

  21. Sumaru K, Matsuoka H, Yamaoka H (1996) Exact evaluation of characteristic protonation of poly(vinylamine) in aqueous solution. J Phys Chem 100:9000–9005

    Article  CAS  Google Scholar 

  22. Chen G, Guojun W, Wang L, Zhang S, Zhaohui S (2008) Layer-by-layer assembly of single-charged ions with a rigid polyampholyte. Chem Commun 15:1741–1743

    Article  Google Scholar 

  23. Zhiyong H, Shufen Z, Jinzong Y, Yu C (2003) Some properties of aqueous-solutions of poly(vinylamine chloride). J Appl Polym Sci 89:3889–3893

    Article  Google Scholar 

  24. Mincheva R, Bougard F, Paneva D, Vachaudez M, Manolova N, Dubois P, Rashkov L (2008) Self-assembly of N-carboxyethylchitosan near the isoelectric point. J Polym Sci A Polym Chem 46:6712–6721

    Article  CAS  Google Scholar 

  25. Hamlin JD, Phillips DAS, Whiting A (1999) UV/Visible spectroscopic studies of the effects of common salt and urea upon reactive dye solutions. Dyes Pig 41:137–142

    Article  CAS  Google Scholar 

  26. Ding C, Ju B, Zhang S (2013) Temperature resistance and salt tolerance of starch derivatives containing sulfonate groups. Starch 65:1–7

    Article  Google Scholar 

  27. Liu C, Xingyue G, Cui M, Qian X, Li R (2014) A novel ternary copolymerized polyzwitterionic of poly(AM/DMAM/MAEDAPS): synthesis and solution properties. J Polym Res 21:620. doi:10.1007/s10965-014-0620-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology R&D Program (2011BAE07B01) and the Youth Foundation of Nanjing Xiaozhuang University (2013NXY92).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Yang or Shufen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, J., Tang, B. et al. Solution properties of amphoteric macromolecular dyes derived from poly(acrylamide-co-vinylamine). J Polym Res 22, 13 (2015). https://doi.org/10.1007/s10965-015-0659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0659-9

Keywords

Navigation