Skip to main content
Log in

Effect of end-group modification, hydrophilic/hydrophobic block ratio and temperature on the surface, associative and thermodynamic behaviour of poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymers in aqueous media

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study describes the surface, micellar, associative and thermodynamic properties of four diblock oxyethylene (E)/oxybutylene (B) copolymers with different hydrophilic block ends and various hydrophilic/hydrophobic ratios in aqueous media. The copolymers were denoted DE40B18, TE40B18, E56B19 and E56B7. The aqueous polymer solutions at various concentrations and temperatures were investigated by surface tensiometry and dynamic and static laser light scattering. Surface tension measurements were employed to detect the critical micelle concentration (CMC) as well as to calculate the surface-active and thermodynamic parameters of adsorption at the air/water interface. CMC values were also used to calculate the enthalpy of micellization (∆H 0 mic), free energy of micellization (∆G 0 mic) and entropy of micellization (∆S 0 mic). Similarly, various thermodynamic parameters for adsorption at the air/water interface were also deduced. Dynamic light scattering (DLS) was used to obtain the hydrodynamic radii (r h) and volumes (υ h) of the micelle at different temperatures, and hence the hydrodynamic expansion parameter (δ h) was also estimated. Likewise, static light-scattering measurements enabled us to determine various parameters of the copolymer micelles, such as the weight-average molar mass (M w), association number (N w), thermodynamic radius (r t), thermodynamic volume (υ t), anhydrous volume (υ a) and the thermodynamic expansion parameter (δt). Various thermodynamic and micellar parameters obtained from light scattering show that the micelles formed are spherical in shape and have rather soft interaction potentials at low temperature but become harder at higher temperature. Based on the different experimental results obtained, it can be said that various surface, micellar and thermodynamic parameters are dependent not only on the temperature and solution conditions but also on the hydrophobic/hydrophilic ratio and the end-group composition of the polymer. Modification of the hydrophilic end group of the polymer prominently affects various micellar properties. This effect can be assigned to the difference in polarity and the intermicellar charge effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roler A, Vandermeulen GWM, Klok H (2001) Adv Drug Deliv Rev 53:95–108

    Article  Google Scholar 

  2. Talom RM, Fuks G, Mingotaud C, Gineste S, Gauffre F (2012) J Colloid Interface Sci 387:180–186

    Article  CAS  Google Scholar 

  3. Du J, Chen Y, Zhang Y, Han CC, Fischer K, Schmidt M (2003) J Am Chem Soc 125:14710–14711

    Article  CAS  Google Scholar 

  4. Dech S, Wruk V, Fik CP, Tiller JC (2012) Polymer 53:701–707

    Article  CAS  Google Scholar 

  5. Antonietti M, Forster S, Hartmann J, Oestreich S (1996) Macromolecules 29:3800–3806

    Article  CAS  Google Scholar 

  6. Mayer ABR, Mark JE (1997) Colloid Polym Sci 275:333–340

    Article  CAS  Google Scholar 

  7. Rao J, Zhang J, Xu J, Liu S (2008) J Colloid Interf Sci 328:196–202

    Article  CAS  Google Scholar 

  8. Hadjichristidis N, Pispas S, Floudas GA (2003) Block copolymers. Synthetic strategies, physical properties and applications. Wiley, New York

    Google Scholar 

  9. Hamley W (1998) The physics of block copolymers. Oxford University Press, Oxford

    Google Scholar 

  10. Booth C, Attwood D (2000) Macromol Rapid Commun 21:501–527

    Article  CAS  Google Scholar 

  11. Jones MC, Gao H, Leroux C (2008) J Control Release 132:208–215

    Article  CAS  Google Scholar 

  12. Yu K, Esenberg A (1998) Macromolecules 31:3509–3518

    Article  CAS  Google Scholar 

  13. Cambón A, Rey-Rico A, Barbosa S, Soltero JFA, Yeates SG, Brea J, Loza MI, Alvarez-Lorenzo C, Concheiro A, Taboada P, Mosquera V (2013) J Control Release 167:68–75

    Article  Google Scholar 

  14. Iijma M, Nagasaki Y, Okada T, Kato M, Kataoka K (1999) Macromolecules 2:1140–1146

    Article  Google Scholar 

  15. Otsuka U, Nagasaki Y, Kataoka K, Okano T, Sakurai Y (1998) Polym Prepr 9:128–129

    Google Scholar 

  16. Spatz JP, Herzog T, Mobmer S, Ziemann P, Moller M (1999) Adv Mater 11:149–153

    Article  CAS  Google Scholar 

  17. Liu G (2000) Chin J Polym Sci 18:255–262

    Google Scholar 

  18. Jenekhe SA, Chen XL (1999) Science 283:372–375

    Article  CAS  Google Scholar 

  19. Yuan J, Xu Z, Cheng S, Feng L (2002) Eur Polym J 38:1537–1546

    Article  CAS  Google Scholar 

  20. Booth C, Yu GE, Nace VM (2000) In: Alexandridis P, Lindman B (eds) Amphiphilic block copolymers: self-assembly and applications. Elsevier, Amsterdam, pp 57–86

  21. Booth C, Attwood D, Price C (2006) Phys Chem Chem Phys 8:3612–3622

    Article  CAS  Google Scholar 

  22. Alexandridis P (1997) Curr Opin Colloid Interface Sci 2:478–489

    Article  CAS  Google Scholar 

  23. Mata J, Joshi T, Varade D, Ghosh G, Bahadur P (2004) Colloid Surf A 247:1–7

    Article  CAS  Google Scholar 

  24. Castro E, Tabooda P, Mosquera V (2005) J Phys Chem B 109:5592–5599

    Article  CAS  Google Scholar 

  25. Li X, Wettig SD, Verrall RE (2005) J Colloid Interf Sci 282:466–477

    Article  CAS  Google Scholar 

  26. Desai H, Varade D, Aswal VK, Goyal PS, Bauhaus P (2006) Eur Polym J 42:593–601

    Article  CAS  Google Scholar 

  27. Jain NJ, Aswal VK, Goyal PS, Bahadur P (2000) Colloid Surf A 173:85–94

    Article  CAS  Google Scholar 

  28. Ganguly R, Aswal VK, Hassan PA, Gopalakrishnan IK, Yakhmi JV (2005) J Phys Chem B 109:5653–5658

    Article  CAS  Google Scholar 

  29. Castro E, Tabooda P, Mosquera V (2006) J Phys Chem B 110:13113–13123

    Article  CAS  Google Scholar 

  30. Khan A, Siddiq M (2010) J Appl Polym Sci 118:3324–3332

    Article  CAS  Google Scholar 

  31. Khan A, Farooqi ZH, Siddiq M (2012) J Appl Polym Sci 124:951–957

    Article  CAS  Google Scholar 

  32. Kelarakis A, Mai SM, Havredaki V, Nace VM, Booth C (2001) Phys Chem Chem Phys 3:4037–4043

    Article  CAS  Google Scholar 

  33. Maskos M (2006) Polymer 47:1172–1178

    Article  CAS  Google Scholar 

  34. Tattershall CE, Jerome NP, Budd PM (2001) J Mater Chem 11:2979–2984

    Article  CAS  Google Scholar 

  35. Tattershall CE, Aslam SJ, Budd PM (2002) J Mater Chem 12:2286–2291

    Article  CAS  Google Scholar 

  36. Khan A, Siddiq M (2013) J Polym Res 20:1–9

    Google Scholar 

  37. Usman M, Siddiq M (2013) J Chem Thermodyn 58:359–366

    Article  CAS  Google Scholar 

  38. Cheema MA, Taboada P, Barbosa S, Castro E, Siddiq M, Mosquera V (2008) J Chem Thermodyn 40:298–308

    Article  CAS  Google Scholar 

  39. Tanford C (1980) The hydrophobic effect. Wiley, New York

  40. William RJ, Phillips JN, Mysels KJ (1955) Trans Faraday Soc 51:561–569

    Article  Google Scholar 

  41. Sultana SB, Bhat SGT, Rakshit AK (1997) Langmuir 13:4562–4568

    Article  Google Scholar 

  42. Provencher SW (1979) Makromol Chem 180:201–209

    Article  CAS  Google Scholar 

  43. Chaibundit C, Ricardo NMPS, Crothers M, Booth C (2002) Langmuir 18:4277–4283

    Article  CAS  Google Scholar 

  44. Barbosa S, Cheema MA, Taboada P, Mosquera V (2007) J Phys Chem B 111:10920–10928

    Article  CAS  Google Scholar 

  45. Wu C, Xia KQ (1994) Rev Sci Instrum 65:587–590

    Article  CAS  Google Scholar 

  46. Vrij A (1978) J Chem Phys 69:1742–1747

    Article  CAS  Google Scholar 

  47. Mai SM, Booth C, Nace VM (1997) Eur Polym J 33:991–996

    Article  CAS  Google Scholar 

  48. Siddiq M, Harrison W, Tattershall CE, Budd PM (2003) Phys Chem Chem Phys 5:3968–3972

    Article  CAS  Google Scholar 

  49. Siddiq M, Liu G, Zhang G, Khan A, Budd PM (2010) Polym Bull 65:521–531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are highly grateful to Dr. Carin Tattershall (University of Manchester) for synthesizing the dimethylamino- and trimethylammonium-tipped diblock copolymers. We are also thankful to Prof. Peter M. Budd of the University of Manchester for helpful discussions. Dr. Abbas Khan is grateful to the Higher Education Commission, H.E.C., Pakistan for financial support under the indigenous Ph.D. fellowship scheme. He also wishes to acknowledge the Academy of Sciences for Developing Countries for a split Ph.D. research fellowship to work in the Department of Chemical Physics, University of Science and Technology, Hefei, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Siddiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Siddiq, M. Effect of end-group modification, hydrophilic/hydrophobic block ratio and temperature on the surface, associative and thermodynamic behaviour of poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymers in aqueous media. J Polym Res 21, 560 (2014). https://doi.org/10.1007/s10965-014-0560-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0560-y

Keywords

Navigation