Skip to main content

Advertisement

Log in

Synthesis and photopolymerisation of maleic polyvinyl alcohol based hydrogels for bone tissue engineering

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The novel synthesis of photopolymerisable polyvinyl alcohol (PVA) was achieved by reacting maleic anhydride with the hydroxyl groups of PVA. The incorporation of photopolymerisable double bonds onto the PVA polymeric chain was confirmed by both 1H NMR and 13C NMR spectroscopy. Hydrogel blends were prepared by mixing maleic PVA and polyethylene glycol dimethacrylate (PEGDMA) precursors at different concentrations and molecular weights. It was observed that the increase in crosslinking with the introduction of maleic PVA crosslinks resulted in higher compressive properties and storage modulus values. These values fall below those reported for bone; however, if these scaffolds were used in conjunction with fixation devices and with the sustained release of dexamethasone it would allow for faster regeneration of bone defects. Drug release results showed that the release profile of the hydrogels was between 11 and 16 days. This was as a result of altering the swelling and pore sizes of the hydrogels by varying the precursor concentrations. Preliminary in vitro cytotoxicity evaluations were performed using the MTT assay as an end point, showing that these novel hydrogels are non-toxic to mouse embryonic fibroblast cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop 205:299–308

    Google Scholar 

  2. Muramatsu K, Ihara K, Hashimoto T, Seto S, Taguchi T (2007) Combined use of free vascularised bone graft and extracorporeally-irradiated autograft for the reconstruction of massive bone defects after resection of malignant tumour. J Plast Reconstr Aesthet Surg 60:1013–8

    Article  Google Scholar 

  3. Muramatsu K, Ihara K, Doi K, Shigetomi M, Hashimoto T, Taguchi T (2006) Reconstruction of massive femur defect with free vascularized fibula graft following tumor resection. Anticancer Res 26:3679–83

    Google Scholar 

  4. Xie Z, Liu X, Jia W, Zhang C, Huang W, Wang J (2009) Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Control Release 139:118–26

    Article  CAS  Google Scholar 

  5. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):S20–S7

  6. Goldberg VM, Stevenson S (1987) Natural history of autografts and allografts. Clin Orthop Relat Res 225:7–16

    Google Scholar 

  7. Sullivan Fa (2011) European Orthopaedic Devices Market Outlook. Frost and Sullivan Mountain View, California,United States. 1–15

  8. Carson JS, Bostrom MPG (2007) Synthetic bone scaffolds and fracture repair. Injury 38:S33–S7

    Article  Google Scholar 

  9. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–53

    Article  CAS  Google Scholar 

  10. Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C et al (2010) Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res Part A 94A:442–449

    CAS  Google Scholar 

  11. Diederich VEG, Studer P, Kern A, Lattuada M, Storti G, Sharma RI et al (2013) Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnol Bioeng 110:1508–19

    Article  CAS  Google Scholar 

  12. Alina S (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci 36:1254–76

    Article  Google Scholar 

  13. Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67:586–95

    Article  Google Scholar 

  14. Wu W, Liu J, Cao S, Tan H, Li J, Xu F et al (2011) Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate]. Int J Pharm 416:104–9

    Article  CAS  Google Scholar 

  15. Ngadaonye J, Geever L, Killion J, Higginbotham C (2013) Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J Polym Res 20:1–13

    Article  CAS  Google Scholar 

  16. Gaballa HA, Geever LM, Killion JA, Higginbotham CL (2013) Synthesis and characterization of physically crosslinked N-vinylcaprolactam, acrylic acid, methacrylic acid, and N,N-dimethylacrylamide hydrogels. J Polym Sci B Polym Phys 51:1555–64

    CAS  Google Scholar 

  17. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–51

    Article  CAS  Google Scholar 

  18. Kobayashi H, Kato M, Taguchi T, Ikoma T, Miyashita H, Shimmura S et al (2004) Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Mater Sci Eng C 24:729–35

    Article  Google Scholar 

  19. Kobayashi M, Toguchida J, Oka M (2001) Development of polyvinyl alcohol-hydrogel (PVA-H) shields with a high water content for tendon injury repair. J Hand Surg Br 26:436–40

    Article  CAS  Google Scholar 

  20. Yang D, Li Y, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym 69:538–43

    Article  CAS  Google Scholar 

  21. Killion JA, Geever LM, Devine DM, Higginbotham CL (2014) Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl 28(8):1274–83

  22. Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, Higginbotham C (2013) Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C 33:4203–12

    Article  CAS  Google Scholar 

  23. Jiang H, Campbell G, Boughner D, Wan W-K, Quantz M (2004) Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med Eng Phys 26:269–77

    Article  Google Scholar 

  24. Ma R, Xiong D, Miao F, Zhang J, Peng Y (2009) Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C 29:1979–83

    Article  CAS  Google Scholar 

  25. Guan Y, Bian J, Peng F, Zhang X, Sun R (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydr Polym 101:272–280

    Article  CAS  Google Scholar 

  26. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401–408

    Article  CAS  Google Scholar 

  27. Dreifke MB, Ebraheim NA, Jayasuriya AC (2013) Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res Part A 101A:2436–47

    Article  CAS  Google Scholar 

  28. Martens P, Holland T, Anseth KS (2002) Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 43:6093–100

    Article  CAS  Google Scholar 

  29. Nilasaroya A, Poole-Warren LA, Whitelock JM, Jo Martens P (2008) Structural and functional characterisation of poly(vinyl alcohol) and heparin hydrogels. Biomaterials 29:4658–64

    Article  CAS  Google Scholar 

  30. Mühlebach A, Müller B, Pharisa C, Hofmann M, Seiferling B, Guerry D (1997) New water-soluble photo crosslinkable polymers based on modified poly(vinyl alcohol). J Polym Sci A Polym Chem 35:3603–11

    Article  Google Scholar 

  31. Zhong C, Wu J, Reinhart-King CA, Chu CC (2010) Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater 6:3908–18

    Article  CAS  Google Scholar 

  32. Jiang Y-P, Guo X-K (2005) O-maleoyl derivative of low-molecular-weight κ-carrageenan: synthesis and characterization. Carbohydr Polym 61:441–5

    Article  CAS  Google Scholar 

  33. Smith TJ, Kennedy JE, Higginbotham CL (2009) The rheological and thermal characteristics of freeze-thawed hydrogels containing hydrogen peroxide for potential wound healing applications. J Mech Behav Biomed Mater 2:264–71

    Article  Google Scholar 

  34. Hui B, Zhang Y, Ye L (2014) Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chem Eng J 235:207–14

  35. Dobić SN, Filipović JM, Tomić SL (2012) Synthesis and characterization of poly(2-hydroxyethyl methacrylate/itaconic acid/poly(ethylene glycol) dimethacrylate) hydrogels. Chem Eng J 179:372–80

    Article  Google Scholar 

  36. Killion JA, Geever LM, Devine DM, Kennedy JE, Higginbotham CL (2011) Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application. J Mech Behav Biomed Mater 4:1219–27

    Article  CAS  Google Scholar 

  37. Singhal A, Almer JD, Dunand DC (2012) Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone. Acta Biomater 8:2747–58

    Article  CAS  Google Scholar 

  38. von Arx T, Broggini N, Jensen S, Bornstein M, Schenk R, Buser D (2005) Membrane durability and tissue response of different bioresorbable barrier membranes: a histologic study in the rabbit calvarium. Int J Oral Maxillofac Implants 20:843–53

    Google Scholar 

  39. Huang Z, Yu B, Feng Q, Li S, Chen Y, Luo L (2011) In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr Polym 85:261–7

    Article  CAS  Google Scholar 

  40. Gaharwar AK, Rivera CP, Wu C-J, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–48

    Article  CAS  Google Scholar 

  41. Baro M, Sánchez E, Delgado A, Perera A, Évora C (2002) In vitro–in vivo characterization of gentamicin bone implants. J Control Release 83:353–64

    Article  CAS  Google Scholar 

  42. Kim H, Suh H, Jo SA, Kim HW, Lee JM, Kim EH et al (2005) In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate. Biochem Biophys Res Commun 332:1053–60

    Article  CAS  Google Scholar 

  43. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  44. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  45. Grehan L, Killion JA, Devine DM, Kenny EK, Devery S, Higginbotham CL, Geever L (2014) The development of hot melt extruded biocompatible controlled release drug delivery devices. Int J Polym Mater Polym Biomater 63:476–85

    Article  CAS  Google Scholar 

  46. Kisiel M, Ventura M, Oommen OP, George A, Walboomers XF, Hilborn J et al (2012) Critical assessment of rhBMP-2 mediated bone induction: an in vitro and in vivo evaluation. J Control Release 162:646–53

    Article  CAS  Google Scholar 

  47. Tan J, Gemeinhart RA, Ma M, Mark Saltzman W (2005) Improved cell adhesion and proliferation on synthetic phosphonic acid-containing hydrogels. Biomaterials 26:3663–71

    Article  CAS  Google Scholar 

  48. Bryant S, Nuttelman C, Anseth K (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from both the Irish Department of Education (Core Research Strengths Enhancement-Technological Sector Research: Strand III) and the Athlone Institute of Technology Research and Development fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement L. Higginbotham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killion, J.A., Geever, L.M., Cloonan, M. et al. Synthesis and photopolymerisation of maleic polyvinyl alcohol based hydrogels for bone tissue engineering. J Polym Res 21, 538 (2014). https://doi.org/10.1007/s10965-014-0538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0538-9

Keywords

Navigation