Skip to main content

Advertisement

Log in

Hybrid collagen/pNIPAAM hydrogel nanocomposites for tissue engineering application

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The present work explores new hybrid bioactive, enzymatically degradable hydrogel nanocomposites. They are composed by stimuli-sensitive semi-interpenetrating collagen/poly(N-isopropyl acrylamide) polymeric matrix, Dellite® 67G and Cloisite® 93A nanoclays, and hydroxyapatite particles. Morphology of the hybrid hydrogel nanocomposites was examined by near infrared chemical imaging, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It has been found that the porous hydrogel nanocomposites showed a mix between intercalated and exfoliated structure, with interconnected pores and the inorganic material was evenly distributed in the polymeric matrix because of specific interactions between components. The collagen resistance against enzymatic degradation and the thermal stability were improved due to the protein encapsulation in the synthetic polymer matrix. The hydrogel nanocomposites showed suitable swelling characteristics for tissue engineering. In vitro cytocompatibility and cell viability revealed that the hybrid nanocomposites were non-cytotoxic for rat osteoblasts. These hybrid nanocomposites were designed as potential synthetic bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Recker RR, Barger-Lux J (2002) Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolismEd 2 edn. Lippincott Williams and Wilkins, Philadelphia, pp 177–198

    Google Scholar 

  2. Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10:1

    Article  Google Scholar 

  3. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Intern J Biol Macromol 47:1–4

    Article  CAS  Google Scholar 

  4. Hayashi M, Muramatsu H, Sato M, Tomizuka Y, Inoue M, Yoshimoto S (2013) Surgical treatment of facial fracture by using unsintered hydroxyapatite particles/poly L-lactide composite device (OSTEOTRANS MX®): a clinical study on 17 cases. J Cranio-Maxillofac Surg 41:783–788

    Article  Google Scholar 

  5. Fujii T, Tanaka T, Ohkawa K (2009) Biomineralization of calcium phosphate on human hair protein film and formation of a novel hydroxyapatite protein composite material. J Biomed Mater Res Part B: Appl Biomater 91:528–536

    Article  CAS  Google Scholar 

  6. Kim M-J, Koh Y-H (2013) Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres. Mater Sci Eng C 33:2266–2272

    Article  CAS  Google Scholar 

  7. Kutikov AB, Song J (2013) An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater 9:8354–8364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong TW, Wahit MU, Kadir MRA, Soheilmoghaddam M, Balakrishnan H (2014) A novel poly(xylitol-co-dodecanedioate)/hydroxyapatite composite with shape-memory behaviour. Mater Letters 126:105–108

    Article  CAS  Google Scholar 

  9. Kim H, Che L, Ha Y, Ryu WH (2014) Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C 40:324–335

    Article  CAS  Google Scholar 

  10. Hu X, Shen H, Yang F, Liang X, Wang S, Wu D (2014) Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold. Appl Surf Sci 292:764–772

    Article  CAS  Google Scholar 

  11. Bareiro O, Santos LA (2014) Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites. Coll Surf B: Biointerfaces 115:400–405

    Article  CAS  Google Scholar 

  12. Vasile E, Popescu LM, Piticescu RM, Burlacu A, Buruiana T (2012) Physico-chemical and biocompatible properties of hydroxyapatite based composites prepared by an innovative synthesis route. Mater Letters 79:85–88

    Article  CAS  Google Scholar 

  13. Tang S, Tian B, Guo Y-J, Zhu Z-A, Guo Y-P (2014) Chitosan/carbonated hydroxyapatite composite coatings: fabrication, structure and biocompatibility. Surf Coatings Technol 251:210–216

    Article  CAS  Google Scholar 

  14. Ma X-Y, Feng Y-F, Ma Z-S, Li X, Wang J, Wang L, Lei W (2014) The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces. Biomaterials 35:7259–7270

    Article  CAS  PubMed  Google Scholar 

  15. Mueller B, Koch D, Lutz R, Schlegel KA, Treccani L, Rezwan K (2014) A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Mater Sci Eng C 42:137–145

    Article  CAS  Google Scholar 

  16. Aghaei H, Nourbakhsh AA, Karbasi S, JavadKalbasi R, Rafienia M, Nourbakhsh N, BonakdarS MKJD (2014) Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery. Ceram Int 40:735–7362

    Article  CAS  Google Scholar 

  17. Trandafir D-L, Mirestean C, Turcu RVF, Frentiu B, Eniu D, Simon S (2014) Structural characterization of nanostructured hydroxyapatite-iron oxide composites. Ceram Int 40:11071–11078

    Article  CAS  Google Scholar 

  18. Gunduz O, Gode C, Ahmad Z, Gökçe H, Yetmez M, Kalkandelen C, Sahin YM, Oktar FN (2014) Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J Mechan Behavior Biomed Mater 35:70–76. https://doi.org/10.1016/j.jmbbm.2014.03.004

    Article  CAS  Google Scholar 

  19. Murphy CM, Haugh MG, O'Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466

    Article  CAS  PubMed  Google Scholar 

  20. Wahl DA, Czernuszka JT (2006) Collagen–hydroxyapatite composites for hard tissue repair. European Cells Mater 11:43–56. https://doi.org/10.22203/eCM.v011a06

    Article  CAS  Google Scholar 

  21. O'Brien FJ, Review, Biomaterials & scaffolds for tissue engineering. Mater Today 2011;14:88–95

  22. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008;17: (Suppl 4), 467–479. doi: https://doi.org/10.1007/s00586-008-0745-3

  23. Cortes DH, Jacobs NT, DeLucca JF, Elliott DM (2014) Elastic, permeability and swelling properties of human intervertebral disc tissues: a benchmark for tissue engineering. J Biomech 47:2088–2094. https://doi.org/10.1016/j.jbiomech.2013.12.021 Epub 2013 Dec 25

    Article  PubMed  Google Scholar 

  24. Sudhakar CK, Upadhyay NN, Jain A, Verma A, Narayana Charyulu R, Jain S. Smart biomaterials for tissue engineering of cartilage, Chap 5: In: Thomas S, Grohens Y, Ninan N. (Editors) Nanotechnology applications for tissue engineering, in micro and nanotechnologies series, Oxford, Elsevier UK, 2015, p.77–95

  25. Nistor MT, Chiriac AP, Vasile C, Verestiuc L, Nita LE (2011) Synthesis of hydrogels based on poly(NIPAM) inserted into collagen sponge. Colloid Surf B Biointer 87:382–390

    Article  CAS  Google Scholar 

  26. Fahmy MD, Shah B, Razavi M, Jazayeri H, Fahimipour F, White J, Masri R, Tayebi L. Smart biomaterials for tissue engineering of cartilage, Chap. 8. In: Wang Q. (Editor) Smart materials for tissue engineering. Applications. In Smart Materials Series, Croydon, Royal Soc. Chemistry, UK, 2017, pp. 194–229

  27. Kalpokaitė-Dičkuvienė R, Lukošiūtė I, Čėsnienė J, Baltušnikas A, Brinkienė K. Influence of the organically modified nanoclay on properties of cement paste, http://www.laviosa.com/wp-content/uploads/2015/01/LAVIOSA_Plastic_InfluenceOfTheOrganicallyModifiedNanoclayOnPropertiesOfCementPaste.pdf

  28. Esposito Corcione C, Striani R, Montagna F, Cannoletta D (2015) Organically modified montmorillonite polymer nanocomposites for stereolithography building process. Polym Adv Technol 26:92–98. https://doi.org/10.1002/pat.3425

    Article  CAS  Google Scholar 

  29. Rao RR, Ceccarelli J, Vigen ML, Gudur M, Singh R, Deng CX, Putnam AJ, Stegemann JP (2014) Effects of hydroxyapatite on endothelial network formation in collagen/fibrin composite hydrogels in vitro and in vivo. Acta Biomater 10:3091–3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tien W-B, Chen M-T, Yao P-C (2012) Effects of pH and temperature on microstructure and morphology of hydroxyapatite/collagen composites synthesized in vitro. Mater Sci Engin C 32:2096–2102

    Article  CAS  Google Scholar 

  31. Salah TA, Mohammad AM, Hassan MA, El-Anadouli BE (2014) Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J Taiwan Inst Chem Eng 45:1571–1577

    Article  CAS  Google Scholar 

  32. Mocanu A, Furtos G, Rapuntean S, Horovitz O, Flore C, Garbo C, Danisteanu A, Rapuntean G, Prejmerean C, Tomoaia-Cotisel M (2014) Synthesis, characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles. Appl Surf Sci 298:225–235

    Article  CAS  Google Scholar 

  33. Azzaoui K, Lamhamdi A, Mejdoubi EM, Berrabah M, Hammouti B, Elidrissi A, Fouda MG, Al-Deyab SS (2014) Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydr Polym 111:41–46

    Article  CAS  PubMed  Google Scholar 

  34. Council of Europe. Protocole d’amendement à la Convention Européenne sur la Protection des Animaux Vertébrés Utilisés à des Fins Expérimentales ou à d’autres Fins Scientifiques; Council of Europe: Strasbourg, France, 1998

  35. Zimmermann MAVMA (1983) Guidelines on euthanasia 2007. Pain 16:109

    Article  CAS  PubMed  Google Scholar 

  36. Maneshi A. Polyethylene clay nanocomposites: modeling and experimental investigation of particle morphology IPR May 2007, https://uwaterloo.ca/institute-polymer-research/sites/ca.institute-polymer-research/files/uploads/files/abolfazlmaneshi.pdf

  37. Nistor MT, Vasile C (2013) Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim 111:1903–1919

    Article  CAS  Google Scholar 

  38. Nistor MT, Chiriac AP, Niţă LE, Vasile C (2013) Characterization of the semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide-co-diethylene glycol diacrylate). Int J Pharm 452:92–101

    Article  CAS  PubMed  Google Scholar 

  39. Liu KL, Choo ES, Wong SY et al (2010) Designing poly(R)-3-hydroxybutyrate-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. J Phys Chem B 114:7489–7498

    Article  CAS  PubMed  Google Scholar 

  40. Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591

    Article  CAS  Google Scholar 

  41. Kucinska-Lipka J, Marzec M, Gubanska I, Janik H (2016) Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering. J Elastomers Plastics 12:1–17. https://doi.org/10.1177/0095244316672093

    Article  CAS  Google Scholar 

  42. Korsmeyer RW, Lustig SR, Peppas NA (1986) Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling. J Polym Sci B Polym Phys 24:395–408

    Article  CAS  Google Scholar 

  43. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project BIONANOMED 164/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Cornelia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PPTX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatiana, N.M., Cornelia, V., Tatia, R. et al. Hybrid collagen/pNIPAAM hydrogel nanocomposites for tissue engineering application. Colloid Polym Sci 296, 1555–1571 (2018). https://doi.org/10.1007/s00396-018-4367-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4367-y

Keywords

Navigation