Skip to main content
Log in

Mesoscale simulation and experimental studies of self-assembly behavior of a PLA-PEG-PLA triblock copolymer micelle for sustained drug delivery

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Dissipative Particle Dynamic simulation (DPD) was employed to investigate PLA-PEG-PLA copolymer micelles to gain more understanding at the molecular level in addition to experimental studies. Critical micelle concentration (cmc), micelle size and small molecule encapsulation of these triblock copolymer micelles with different hydrophobic/hydrophilic (LA/EG) block ratios (2.56, 4.88 and 7.25 with fixed PEG length = 23 monomer units) were determined. Only the appropriated LA/EG block ratio (4.88 and 7.25) can induce the formation of spherical micelle in a dilute solution. The cmc and micelle size were decreased and increased, respectively, as a function of the LA/EG block ratio. Upon adding small solubilizate molecules, a larger micelle size was formed. Then, PLA-PEG-PLA with the same LA/EG block ratios as DPD simulation were synthesized and the micelle solution was prepared. Pyrene was used as the molecular probe to find the cmc by fluorescence spectroscopy. Light scattering was applied to determine the hydrodynamic radius (R H ) of these micelles. The cmc and RH were decreased and increased, respectively, with LA/EG ratio, qualitatively similar to the trends as simulation results. The behavior of these copolymer micelles to encapsulate the small solubilizate molecules was also studied by fluorescence technique. The partition coefficients of pyrene between the water phase and the micelle core were increased with a higher LA/EG block ratio similar to results from the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whittlesey KJ, Shea LD (2004) Delivery systems for small molecule drugs, proteins, and DNA: the neuroscience/biomaterial interface. Exp Neurol 190(1):1–16

    Article  CAS  Google Scholar 

  2. Winzenburg G, Schmidt C, Fuchs S, Kissel T (2004) Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev 56(10):1453–1466

    Article  CAS  Google Scholar 

  3. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798

    Article  CAS  Google Scholar 

  4. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    Article  CAS  Google Scholar 

  5. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204

    Article  CAS  Google Scholar 

  6. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnol Biol Med 6(1):9–24

    Article  CAS  Google Scholar 

  7. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18

    Article  CAS  Google Scholar 

  8. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3):169–188

    Article  CAS  Google Scholar 

  9. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16

    Article  CAS  Google Scholar 

  10. Cho H, Cheong I, Lee J, Kim J (2010) Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean J Chem Eng 27(3):731–740

    Article  CAS  Google Scholar 

  11. Ohya Y, Takahashi A, Nagahama K (2012) Biodegradable polymeric assemblies for biomedical materials. In: Kunugi S, Yamaoka T (eds) Polymers in Nanomedicine, vol 247. Advances in Polymer Science. Springer Berlin Heidelberg, pp 65-114

  12. Linse P (1994) Adsorption and phase behaviour of pluronic block copolymers in aqueous solution. Colloids Surf A Physicochem Eng Asp 86:137–142

    Article  CAS  Google Scholar 

  13. Almgren M, Brown W, Hvidt S (1995) Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution. Colloid Polymer Sci 273(1):2–15

    Article  CAS  Google Scholar 

  14. Kwon GS, Okano T (1999) Soluble self-assembled block copolymers for drug delivery. Pharm Res 16(5):597–600

    Article  CAS  Google Scholar 

  15. Loh W (2002) Block copolymer micelles. Encycl Surf Colloid Sci 802-813

  16. Peng Z (2012) Synthesis and the effect of hydrophobic dodecyl end groups on pH-responsive micellization of poly(acrylic acid) and poly(ethylene glycol) triblock copolymer in aqueous solution. Iran Polym J 21(4):253–261

    Article  CAS  Google Scholar 

  17. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27(9):2414–2425

    Article  CAS  Google Scholar 

  18. Mata J, Joshi T, Varade D, Ghosh G, Bahadur P (2004) Aggregation behavior of a PEO–PPO–PEO block copolymer + ionic surfactants mixed systems in water and aqueous salt solutions. Colloids Surf A Physicochem Eng Asp 247(1):1–7

    Article  CAS  Google Scholar 

  19. Rapoport N (2004) Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int J Pharm 277(1):155–162

    Article  CAS  Google Scholar 

  20. Li SM, Rashkov I, Espartero JL, Manolova N, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29(1):57–62

    Article  CAS  Google Scholar 

  21. Venkatraman SS, Jie P, Min F, Freddy BYC, Leong-Huat G (2005) Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier. Int J Pharm 298(1):219–232

    Article  CAS  Google Scholar 

  22. Agrawal SK, Sanabria-DeLong N, Coburn JM, Tew GN, Bhatia SR (2006) Novel drug release profiles from micellar solutions of PLA–PEO–PLA triblock copolymers. J Control Release 112(1):64–71

    Article  CAS  Google Scholar 

  23. Bagheri M, Bigdeli E (2013) Preparation of stealth micellar nanoparticles of novel biodegradable and biocompatible brush copolymers with cholesteryl-modified PLA and PEG side chains. J Polym Res 20(3):1–11

    Article  Google Scholar 

  24. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  25. Xin DG, Jeremy PKT, Sung HK, Li JZ, Ying Z, James LH, Yi YY, Yu Q (2009) Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials 30(33):6556–6563

    Article  Google Scholar 

  26. Matana Chansuna (2013) Preparation, Characterization and Molecular Modeling of Triblock Copolymer Micelle as Model for Drug Delivery System. PhD Dissertation, School of Chemistry, Suanaree University of Technology

  27. Hagan SA, Coombes AGA, Garnett MC, Dunn SE, Davies MC, Illum L, Davis SS, Harding SE, Purkiss S, Gellert PR (1996) Polylactide − poly(ethylene glycol) copolymers as drug delivery systems. 1. characterization of water dispersible micelle-forming systems. Langmuir 12(9):2153–2161

    Article  CAS  Google Scholar 

  28. Zhang Y, Jin T, Zhuo R-X (2005) Methotrexate-loaded biodegradable polymeric micelles: Preparation, physicochemical properties and in vitro drug release. Colloids Surf B: Biointerfaces 44(2–3):104–109

    Article  CAS  Google Scholar 

  29. Cohn D, Younes H (1988) Biodegradable PEO/PLA block copolymers. J Biomed Mater Res 22(11):993–1009

    Article  CAS  Google Scholar 

  30. Dai Z, Piao L, Zhang X, Deng M, Chen X, Jing X (2004) Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene glycol) in aqueous and NaCl salt solutions. Colloid Polymer Sci 282(4):343–350

    Article  CAS  Google Scholar 

  31. Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24(5):1033–1040

    Article  CAS  Google Scholar 

  32. He G, Ma LL, Pan J, Venkatraman S (2007) ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and “stealth” particle characteristics. Int J Pharm 334(1):48–55

    Article  CAS  Google Scholar 

  33. Yang YW, Yang Z, Zhou ZK, Attwood D, Booth C (1996) Association of Triblock Copolymers of Ethylene Oxide and Butylene Oxide in Aqueous Solution. A Study BnEmBn Copolymers Macromol 29(2):670–680

    CAS  Google Scholar 

  34. Liu L, Li C, Li X, Yuan Z, An Y, He B (2001) Biodegradable polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as anticancer drug carriers. J Appl Polym Sci 80(11):1976–1982

    Article  CAS  Google Scholar 

  35. Xing L, Mattice WL (1998) Large Internal Structures of Micelles of Triblock Copolymers with Small Insoluble Molecules. Their Cores Langmuir 14(15):4074–4080

    Article  CAS  Google Scholar 

  36. Whitmore MD, Noolandi J (1985) Theory of micelle formation in block copolymer-homopolymer blends. Macromolecules 18(4):657–665

    Article  CAS  Google Scholar 

  37. Ruan G, Feng S-S (2003) Preparation and characterization of poly(lactic acid) – poly(ethylene glycol) – poly(lactic acid) (PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials 24(27):5037–5044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MC thanks the National Science and Technology Development Agency (NSDTA) for the Thailand Graduated Institute of Science and Technology (TGIST) scholarship (No. TG-55-19-50-054D) and we thank Computational Nanoscience Consortium (CNC), National Nanotechnology Center, Thailand, for their permission to Material Studio software. We would like to kindly thank Prof. Takahiro Sato, Laboratory of Macromolecular Assemblies, Department of Macromolecular Science, Osaka University, Japan for support of the experiment and discussion. VV would like to thank the research support from Suranaree University of Technology. MC, NP and VV have contributed to this work as 50 %, 10 % and 40 %, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visit Vao-soongnern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chansuna, M., Pimpha, N. & Vao-soongnern, V. Mesoscale simulation and experimental studies of self-assembly behavior of a PLA-PEG-PLA triblock copolymer micelle for sustained drug delivery. J Polym Res 21, 452 (2014). https://doi.org/10.1007/s10965-014-0452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0452-1

Keywords

Navigation