Skip to main content
Log in

Polyacrylate guanidine and polymethacrylate guanidine as novel cationic polymers for effective bilirubin binding

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of polycationic polymers of polyacrylate guanidine (PAG) and polymethacrylate guanidine (PMAG) on bilirubin absorbance were studied in phosphate buffer (pH 7.4). It was shown that the change in absorbance spectra of bilirubin in the presence of PAG/PMAG can be associated with the formation of a bilirubin-polymer complex and dissociation of tetramers on bilirubin monomers. Also, the organic-inorganic composite materials based on silica gels and guanidine polymers were synthesized via the sol-gel technique. The incorporated guanidine polymers have a big influence on particle size distribution of silica gel due to their high cross-linking ability. The infrared spectroscopy revealed the presence of guanidine polymers inside solid networks of silica gel. The bilirubin adsorption process onto a guanidine functionalized silica surface was investigated. The Langmuir and Redlich-Peterson isotherm models were tested to explain the adsorption mechanism. The analysis of the adsorption isotherms confirms the possibility of electrostatic interactions of bilirubin molecules with guanidine polymers incorporated inside silica matrix. We conclude that cationic guanidine polymers might be effectively applied for bilirubin removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tillet G, Boutevin B, Ameduri B (2011) Prog Polym Sci 36:191–217

    Article  CAS  Google Scholar 

  2. Siedenbiedel F, Tiller JC (2012) Polymers 4:46–71

    Article  CAS  Google Scholar 

  3. Wang X, McCord MG (2007) J Appl Polym Sci 104(6):3614

    Article  CAS  Google Scholar 

  4. Tew GN, Scott RW, Klein ML, De Novo WF (2010) Acc Chem Res 43:30–39

    Article  CAS  Google Scholar 

  5. Kenawy ER, Worley SD, Broughton R (2007) Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  6. Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Biotechnol Bioeng 79:465–471

    Article  CAS  Google Scholar 

  7. Timifeeva L, Kleshcheva N (2007) Appl Microbiol Biotechnol 89:475–492

    Article  CAS  Google Scholar 

  8. Banerjee I, Pangule RC, Kane RS (2011) Adv Mater 23:690–718

    Article  CAS  Google Scholar 

  9. Gonzales FP, Maisch T (2010) Drug News Perspect 23:167–174

    Article  CAS  Google Scholar 

  10. Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN (2007) Mater Sci Eng R 57:28–64

    Article  CAS  Google Scholar 

  11. Lienkamp K, Madkour AE, Musate A, Nelson CF (2008) J Am Chem Soc 130:9836–9843

    Article  CAS  Google Scholar 

  12. Funhoff AM, Nostrum CF, Lok MC (2004) Bioconjug Chem 15:1212–1220

    Article  CAS  Google Scholar 

  13. Timin AS, Rumyantsev EV (2013) Res Chem Intermed. doi:10.1007/s11164-013-1361-3

    Google Scholar 

  14. Carlos PM et al (2013) Biomater Sci 1:736–744

    Article  CAS  Google Scholar 

  15. Qian L, Dong C et al (2013) Holzforschung. doi:10.1515/hf-2012-0206

    Google Scholar 

  16. Kratzer C, Tobudic S, Macfelda K (2007) Antimicrob Agents Chemother 51(9):3437–3439

    Article  CAS  Google Scholar 

  17. Stelmakh SA, Grigoreva MN (2012) J Mater Sci Eng B 2(8):421–428

    Google Scholar 

  18. Treat NJ, Smith D, Tenq C et al (2012) ACS Macro Lett 1:100–104

    Article  CAS  Google Scholar 

  19. Zunszain PA, Ghuman J, McDonagh AF, Curry S (2008) J Mol Biol 381:394–406

    Article  CAS  Google Scholar 

  20. Baydemir G, Andac M, Bereli N et al (2007) Ind Eng Chem 46:2843–2852

    Article  CAS  Google Scholar 

  21. Lee KH, Wendon J, Lee M (2002) Liver Transplant 8:591–602

    Article  CAS  Google Scholar 

  22. Mukerjee P, Ostrow JD (2010) Biochemisty 11:16–28

    Google Scholar 

  23. Kim Y, Binauld S, Stenzel MH (2012) Biomacromolecules 13(10):3418–3426

    Article  CAS  Google Scholar 

  24. Menaa B, Menaa F, Aiolfi-Guimaraes C, Sharts O (2010) Int J Nanotechnol 7:1–45

    Article  CAS  Google Scholar 

  25. Dabrowski A, Barczak A, Dudarko OA (2007) Pol J Chem 81:475–483

    CAS  Google Scholar 

  26. El-Nahhal IM, El-Ashgar NM (2007) J Organomet Chem 692:2861–2870

    Article  CAS  Google Scholar 

  27. Li XG, Ma XL, Sun J, Huang MR (2009) Langmuir 25:1675–1684

    Article  CAS  Google Scholar 

  28. Dudarko OA, Zub YL, Dabrowski A (2011) Glas Phys Chem 6:596–602

    Article  CAS  Google Scholar 

  29. Lynch I, Dawson K (2008) Nano Today 3:40–47

    Article  CAS  Google Scholar 

  30. Mansur HS, Orefice RL, Vasconcelos WL, Lobato ZP, Machardo LJC (2005) J Mater Sci Mater Med 16:333–340

    Article  CAS  Google Scholar 

  31. Timin AS, Rumyantsev EV (2013) J Sol-Gel Sci Technol 67:297–303

    Article  CAS  Google Scholar 

  32. Sivov NA, Khashirova SY (2008) Mod Tendencies Org Bioorg Chem 27:310–335

    Google Scholar 

  33. Rai AK, Rai SB, Rai DK, Singh VB (2002) Spectrochim Acta A 58:2145–2152

    Article  Google Scholar 

  34. Sugiol S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439–446

    Article  Google Scholar 

  35. Xu Y, Axe L (2005) J Colloid Interface Sci 282:11–19

    Article  CAS  Google Scholar 

  36. Shengju W, Li Fengting X, Ran WS, Guangtao L (2010) J Nanoparticle Res 12:2111–2124

    Article  CAS  Google Scholar 

  37. Mansur HS, Lobato ZP, Orefice RL, Vansconcelos WL (2001) Adsorption 7:105

    Article  CAS  Google Scholar 

  38. Atieh MA, Bakather OY, Al-Tawbini B, Alaadin A et al (2010) Bioinorg Chem Appl. doi:10.1155/2010/603978

    Google Scholar 

  39. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  40. Kumar KV, Porkodi K (2006) J Hazard Mater 138:633–635

    Article  CAS  Google Scholar 

  41. Hamdaoui O, Naffrechoux E (2007) J Hazard Mater 147:401–411

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Khashirova S. Yu., the Department of Macromolecular Compounds, Kabardino-Balkar State University by N.M. Berbecova, for the synthesis of guanidine polymers which were used in this work. The work was supported by a grant of the RFBR (project No. 12-03-31309), bursary of the President of the Russian Federation No. SP- for young scientists and graduate students engaged in advanced research and development in priority directions of modernization of the Russian economy (2013–2015) and a grant of the President of the Russian Federation No. МК-287.2014.3 (2014–2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Timin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timin, A.S., Solomonov, A.V. & Rumyantsev, E.V. Polyacrylate guanidine and polymethacrylate guanidine as novel cationic polymers for effective bilirubin binding. J Polym Res 21, 400 (2014). https://doi.org/10.1007/s10965-014-0400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0400-0

Keywords

Navigation