Skip to main content
Log in

Synthesis and ionic conductivity of a novel ionic liquid polymer electrolyte

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hyperbranched poly(glycidol) (HPG) containing hydroxyl groups is firstly synthesized via anionic polymerization, and then reacts with thionyl chloride to form chlorine end-terminated hyperbranched poly(glycidol) (HPG-Cl). Different ionic liquid polymers are synthesized from the reaction of HPG-Cl with N-methylimidazole and then anion exchange with hexafluorophosphoric acid and sodium tetrafluoroborate. The structure and properties of the obtained ionic liquid polymers are characterized by 1H NMR, ATR-FTIR, DSC and TGA, respectively. Ionic conductivity of the polymer electrolytes composed of ionic liquid polymer and lithium bis(trifluoromethanesulfonimide) (LITFSI) is investigated by electrochemical impedance spectroscopy. The results show that the ionic conductivity of the prepared ionic liquid polymer electrolyte can reach 3.5 × 10−4 Scm−1 at 30 °C when the weight ratio of ionic liquid polymer ([HPG-MeIm]BF4) to lithium salt (LiTFSI) is 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kabalka GW, Venkataiah B (2002) Tetrahedron Lett 43:3703–3705

    Article  CAS  Google Scholar 

  2. Kumar A, Pawar SS (2004) J Mol Catal a-Chem 211:43–47

    Article  CAS  Google Scholar 

  3. Dere RT, Pal RR, Patil PS, Salunkhe MM (2003) Tetrahedron Lett 44:5351–5353

    Article  CAS  Google Scholar 

  4. Visser AE, Holbrey JD, Rogers RD (2001) Chem Commun 23:2484–2485

    Article  Google Scholar 

  5. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2001) Chem Commun 1:135–136

    Article  Google Scholar 

  6. Shimojo K, Goto M (2004) Anal Chem 76:5039–5044

    Article  CAS  Google Scholar 

  7. Cong HL, Yu B, Tang JG, Zhao XS (2012). J Polym Res 19:9761. doi:10.1007/S10965-011-9761-9

    Google Scholar 

  8. Zhu JM, Zhou JH, Zhang H, Chu RZ (2011) J Polym Res 18:2011–2015

    Article  CAS  Google Scholar 

  9. Carmichael AJ, Haddleton DM, Bon SAF, Seddon KR (2000) Chem Commun 14:1237–1238

    Article  Google Scholar 

  10. Qiao K, Deng YQ (2002) New J Chem 26:667–670

    Article  CAS  Google Scholar 

  11. Liu SW, Zhou L, Li L, Yu ST, Liu FS, Xie CX, Song ZQ (2013). J Polym Res 20:310. doi:10.1007/S10965-013-0310-6

    Google Scholar 

  12. Koch VR, Dominey LA, Nanjundiah C, Ondrechen MJ (1996) J Electrochem Soc 143:798–803

    Article  CAS  Google Scholar 

  13. Sakaebe H, Matsumoto H (2003) Electrochem Commun 5:594–598

    Article  CAS  Google Scholar 

  14. Garcia B, Lavallee S, Perron G, Michot C, Armand M (2004) Electrochim Acta 49:4583–4588

    Article  CAS  Google Scholar 

  15. Egashira M, Okada S, Yamaki J (2003) J Power Sources 124:237–240

    Article  CAS  Google Scholar 

  16. Forsyth M, Sun J, Zhou F, MacFarlane DR (2003) Electrochim Acta 48:2129–2136

    Article  CAS  Google Scholar 

  17. Ulaganathan M, Mathew CM, Rajendran S (2013) Electrochim Acta 93:230–235

    Article  CAS  Google Scholar 

  18. Ulaganathan M, Pethaiah SS, Rajendran S (2011) Mater Chem Phys 129:471–476

    Article  CAS  Google Scholar 

  19. Ulaganathan M, Rajendran S (2010) J Appl Polym Sci 118:646–651

    CAS  Google Scholar 

  20. Preechatiwong W, Schultz JM (1996) Polymer 37:5109–5116

    Article  CAS  Google Scholar 

  21. Yang XQ, Lee HS, Hanson L, Mcbreen J, Okamoto Y (1995) J Power Sources 54:198–204

    Article  CAS  Google Scholar 

  22. Liu S, Wang H, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2011) J Power Sources 196:7681–7686

    Article  CAS  Google Scholar 

  23. Hirao M, Ito K, Ohno H (2000) Electrochim Acta 45:1291–1294

    Article  CAS  Google Scholar 

  24. Ohno H (2001) Electrochim Acta 46:1407–1411

    Article  CAS  Google Scholar 

  25. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2013) J Polym Res 20:242. doi:10.1007/S10965-013-0242-1

    Article  Google Scholar 

  26. Celik SU, Bozkurt A (2013) J Polym Res 20:63. doi:10.1007/S10965-012-0063-7

    Google Scholar 

  27. Wang XL, Chen JJ, Hong L, Tang XZ (2001) J Polym Sci Pol Phys 39:2225–2230

    Article  CAS  Google Scholar 

  28. Lee SI, Schomer M, Peng HG, Page KA, Wilms D, Frey H, Soles CL, Yoon DY (2011) Chem Mater 23:2685–2688

    Article  CAS  Google Scholar 

  29. Sun XY, Yang XH, Liu YH, Wang XL (2004) J Polym Sci Pol Chem 42:2356–2364

    Article  CAS  Google Scholar 

  30. Sunder A, Hanselmann R, Frey H, Mulhaupt R (1999) Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  31. Jiang H, Fang SB (2006) Polym Advan Technol 17:494–499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (No. 51073170, 50703044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liaoyun Zhang or Huayi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, T., Ren, S., Zhou, Q. et al. Synthesis and ionic conductivity of a novel ionic liquid polymer electrolyte. J Polym Res 21, 361 (2014). https://doi.org/10.1007/s10965-014-0361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0361-3

Keywords

Navigation