Skip to main content
Log in

Visco-elastic and dielectric relaxation behavior of multiwalled carbon-nanotube reinforced silicon elastomer nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Visco-elastic and dielectric spectra of multiwalled carbon-nanotube reinforced silicon elastomer nanocomposites were used to study relaxation behavior. SEM photomicrographs shows well dispersion of MWCNT in elastomer matrix. In visco-elastic analysis primary relaxation was studied as a function of temperature (−100 to 100 °C) at frequency 1Hz and strain 1 %. The effect of MWCNT loadings on storage modulus, loss modulus, and loss tangent has been studied. The non-linearity in loss tangent, storage modulus and loss modulus was explained on the basis of MWCNT-elastomer interaction and the inter-aggregate attraction of MWCNT. The secondary β relaxation was studied using dielectric relaxation spectra in the frequency range of 0.1 Hz to 106 Hz. The effect of MWCNT loadings on the complex and real parts of impedance was distinctly visible which has been explained on the basis of interfacial polarization of fillers in a heterogeneous medium and relaxation dynamics of polymer chains in the vicinity of fillers. The dielectric formalism has been utilized to further investigate the conductivity and relaxation phenomenon. The ‘percolation limit’ of the MWCNT in the silicon elastomer was found to be in the range of 4 phr loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kraus G (1965) Reinforcement of elastomers. Interscience, New York

    Google Scholar 

  2. Medalia AI, Dannenberg EM, Heckman FA, Cotton GR (1973) Characterization of new technology carbon blacks. Rubber Chem Technol 46:1239–1255

    Article  CAS  Google Scholar 

  3. Sridhar V, Chaudhary RNP, Tripathy DK (2006) Effect of fillers on the relaxation behavior of chlorobutyl vulcanizates. J Appl Polym Sci 100:3161–3173

    Article  CAS  Google Scholar 

  4. Katsuno T, Chen X, Yang S, Motojima S, Homma M, Maeno T, Konyo M (2006) Observation and analysis of percolation behavior in carbon microcoils/silicone-rubber composite sheets. Appl Phys Lett 88:232115–232118

    Article  Google Scholar 

  5. Chen G, Wu C, Weng W, Wu D, Yan Y (2003) Preparation of polystyrene/graphite nanosheet composites. Polymer 44:1781–1784

    Article  CAS  Google Scholar 

  6. Zhou W, Wu Y, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs–PEO and MWCNTs–PVA nanofibers. Polymer 46:12689–12695

    Article  CAS  Google Scholar 

  7. Kim HS, Myung SJ, Jung R, Jin HJ (2007) Microspherical poly (methyl methacrylate)/multiwalled carbon nanotube composites prepared via in situ dispersion polymerization. J Nanosci Nanotechnol 7:4045–4048

    Article  CAS  Google Scholar 

  8. Kim HS, Kwon SM, Lee KH, Yoon JS, Jin HJ (2008) Preparation and characterization of silicone rubber/functionalized carbon nanotubes composites via in situ polymerization. J Nanosci Nanotechnol 8:5551–5554

    Article  CAS  Google Scholar 

  9. Kim ES, Kim HS, Jung SH, Yoon JS (2007) Adhesion properties and thermal degradation of silicone rubber. J Appl Polym Sci 103:2782–2787

    Article  CAS  Google Scholar 

  10. Kim LK, Kim IH (2001) Characteristics of surface wettability and hydrophobicity and recovery ability of EPDM rubber and silicone rubber for polymer insulators. J Appl Polym Sci 79:2251–2257

    Article  CAS  Google Scholar 

  11. Zhang N, Xie J, Varadan VK (2002) Functionallization of carbon nanotubes by Potassium permanganate assisted with phase transfer catalyst. Smart Mater Struct 11:962–965

    Article  CAS  Google Scholar 

  12. Park IS, Kim KJ, Nam JD, Lee J, Yim W (2007) Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi-walled carbon nanotubes as a nanofiller Polym. Eng Sci 47:1396–1405

    CAS  Google Scholar 

  13. Mansouri J, Burford RP, Cheng YB (2006) Pyrolysis behavior of silicone based ceramifying composites. Maht Sci Eng 425:7–14

    Article  Google Scholar 

  14. Long D, Lequeux F (2001) Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. EPJE 4:371–387

    Article  CAS  Google Scholar 

  15. Ediger MD (2000) Spatially heterogeneous dynamic in supercolled liquids. Annu Rev Phys Chem 51:99–128

    Article  CAS  Google Scholar 

  16. Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935

    Article  CAS  Google Scholar 

  17. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88:3113–3157

    Article  CAS  Google Scholar 

  18. Hodge IM (1994) Enthalpy relaxation and recover in amorphous materials. J Non-Cryst Solids 169:211–266

    Article  CAS  Google Scholar 

  19. Valentini L, Amentano I, Biagotti J, Kenny JM, Santucci S (2003) Frequency dependent electrical transport between conjugated polymer and single-walled carbon nanotubes. Diam Relat Mater 12:1601–1609

    Article  CAS  Google Scholar 

  20. Sui G, Zhou XW, Liang J, Zhu YF (2005) Vulcanizating behavior of carbon nanotube/NR composites. Rubber Ind 52:5–8

    CAS  Google Scholar 

  21. Mc-Crum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymeric solids, Doverth edn. Dover Inc, New York

    Google Scholar 

  22. Jawad SA, Alnajjar A (1997) Frequency and temperature dependence of ac electrical properties of graphitized carbon black filled rubber. Polym Int 44:208–212

    Article  CAS  Google Scholar 

  23. Wang YJ, Pan Y, Zhang X, Tan K (2005) Impedence spectra of carbob black filled high density polyethylene composites. J App Polym Sci 98:1344–1350

    Article  CAS  Google Scholar 

  24. Huber G, Vilgis TA (2002) On the mechanisms of hydrodynamics reinforcement in elastic composites. Macromolecules 35:9204–9210

    Article  CAS  Google Scholar 

  25. Kluppel M, Heinrich G (1995) Fractal structures in carbon black reinforced rubbers. Rubber Chem Technol 68:623–651

    Article  Google Scholar 

  26. Knite M, Teteris V, Kiploka A, Klemenoks I (2004) Reversible tenso-resistance and piezo-resistance effects in conductive polymer-carbon nanocomposites. Adv Eng Mater 6:742–746

    Article  CAS  Google Scholar 

  27. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci B 43:3273–3287

    Article  CAS  Google Scholar 

  28. Bottger H, Bryskin VV (1985) Hopping conduction in solids. Akademie-Verlag, Berlin, pp 169–213

    Google Scholar 

  29. Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofibre composites. Eur Polym J 41:889–893

    Article  CAS  Google Scholar 

  30. Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur Polym J 36:1043–1054

    Article  CAS  Google Scholar 

  31. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saji, J., Khare, A., Choudhary, R.N.P. et al. Visco-elastic and dielectric relaxation behavior of multiwalled carbon-nanotube reinforced silicon elastomer nanocomposites. J Polym Res 21, 341 (2014). https://doi.org/10.1007/s10965-013-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0341-z

Keywords

Navigation