Skip to main content
Log in

Synthesis of polyols and polyurethanes from vegetable oils–kinetic and characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The demand of vegetable oils by several sectors of the chemical industry is growing at a fast pace fueled by the fossil oil scarcity, its unpredictable price fluctuations and the ever increasing environmental concerns. The present work reports for the first time the synthesis of polyols and polyurethanes (PUs) from linseed seed (Linum usitatissimun L.) and passion fruit (Passiflora edulis Sims f. flavicarpa Degener) oils. The in situ epoxidation and hydroxylation of vegetable oils in a single step was successfully accomplished using a mixture of hydrogen peroxide (H2O2) and formic acid. Kinetic studies were performed on this system. The oils and the corresponding polyols were characterized by Fourier transform infrared (FT-IR), gel permeation chromatography (GPC) and thermogravimetry (TG)/derivative termogravimetry (DTG). The PUs were characterized by FT-IR, TG/DTG, dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The study revealed a marked deviation on the properties between the starting materials and the end products. The PUs produced showed similar dynamic mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Belgacem M, Gandini A (2008) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, UK

    Google Scholar 

  2. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Chen S, Wang Q, Wang T (2012) J Polym Res 19(11):1–7, art. no. 9994

    Article  Google Scholar 

  4. Chen K, Yu T, Chen Y, Lin T, Liu W (2001) J Polym Res 8:99–109

    Article  CAS  Google Scholar 

  5. Gavrilescu M, Chisti Y (2005) Biotechnol Adv 23:471–499

    Article  CAS  Google Scholar 

  6. Gavrilescu M (2004) Environ Eng Manag J 3:45–70

    Google Scholar 

  7. Erhan SZ (2005) Industrial uses of vegetable oils. AOCS Press, Champaign

    Book  Google Scholar 

  8. Gunstone F, Harwood J, Dijkstra A (2007) The lipid handbook, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  9. Gandini A (2008) Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  10. Lu YS, Larock RC (2009) ChemSusChem 2:136–147

    Article  CAS  Google Scholar 

  11. Hou CT (2009) New Biotechnol 26:2–10

    Article  CAS  Google Scholar 

  12. Kockritz A, Martin A (2008) Eur J Lipid Sci Technol 110:812–824

    Article  Google Scholar 

  13. Harry-O’kuru RE, Gordon SH, Biswas A (2005) J Am Oil Chem Soc 82:207–212

    Article  Google Scholar 

  14. Petrovic ZS, Zlatanic A, Lava CC, Sinadinovic-Fiser S (2002) Eur J Lipid Sci Technol 104:293–299

    Article  CAS  Google Scholar 

  15. Lopes RVV, Zamian JR, Resck IS, Sales MJA, Santos ML, Cunha FR (2010) Eur J Lipid Sci Technol 112:1253–1262

    Article  CAS  Google Scholar 

  16. Lopes RVV (2009) Ph. D. Thesis, Institute of Chemistry, University of Brasilia, Brasília, Brazil, entitled; Poliuretanas obtidas a partir dos óleos de linhaça (Linum usitatissimun L.) e maracujá (Passiflora edulis Sims f. flavicarpa Degener) – Preparação e caracterização

  17. Lopes RVV, Loureiro NPD, Fonseca PS, Zamian JR, Macedo JL, Sales MJA, Santos ML (2009) Macromol Symp 286:89–94

    Article  CAS  Google Scholar 

  18. Santánna E, Tôrres RCO, Porto ACS (2001) Bol Cent Pesqui Process Aliment 19:85–91

    Google Scholar 

  19. O’Brien RD (2009) Fats and oils: formulating and processing for applications, 2nd edn. CRC Press, New York

    Google Scholar 

  20. Lima V, Pelissoli NS, Dullius JEL, Ligabue RA, Einloft SMO (2007) In Anais do 9° Congresso Brasileiro de Polímeros, Campina Grande, Brasil

  21. Nicholson JW (1991) The chemistry of polymers. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  22. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes, 1st edn. Rapra Technology, United Kingdom

    Google Scholar 

  23. Petrovic ZS (2010) Contemp Mater. doi:10.5767/anurs.cmat.100101.en.039P

    Google Scholar 

  24. Eaves D (2004) Handbook of polymers foams. Rapra Technology, United Kingdom

    Google Scholar 

  25. Monteavaro LL, Silva EO, Costa APO, Samios D, Gerbase AE, Petzhold CL (2005) J Am Oil Chem Soc 82:365–371

    Article  CAS  Google Scholar 

  26. ASTM (1995) ASTM: D1957-86: standard test method for hydroxyl value of fatty oils and acids. ASTM International, West Conshohocken

    Google Scholar 

  27. ASTM (2005) ASTM: D5155-96: standard test method for polyurethane raw materials: determination on the isocyanate content of aromatic isocyanates. ASTM International, West Conshohocken

    Google Scholar 

  28. Petrovic ZS (2008) Polym Rev 48:109–155

    Article  CAS  Google Scholar 

  29. Carey FA, Sundberg RJ (2000) Adv Org Chem Part A: Struct Mech Fourth Edition. Plenum Publishers, New York

  30. Guillén MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) J Am Oil Chem Soc 80:755–762

    Article  Google Scholar 

  31. Campanella A, Baltanás MA (2006) Chem Eng J 118:141–152

    Article  CAS  Google Scholar 

  32. Köckritz A, Martin A (2008) Eur J Lipid Sci Technol 110:812–824

    Article  Google Scholar 

  33. Sharmin E, Ashraf SM, Ahmad S (2007) Eur J Lipid Sci Technol 109:134–146

    Article  CAS  Google Scholar 

  34. Narine SS, Kong X, Bouzidi L (2007) J Am Oil Chem Soc 84:65–72

    Article  CAS  Google Scholar 

  35. Kong X, Narine SS (2007) Biomacromolecules 8:2203–2209

    Article  CAS  Google Scholar 

  36. Zlatanic A, Lava C, Zhang W, Petrovic ZS (2004) J Polym Sci B Polym Phys 42:809–819

    Article  CAS  Google Scholar 

  37. Silverstein RM, Webster FX (2000) Identificação espectrométrica de compostos orgânicos, 6th edn. LCT, Rio de Janeiro

    Google Scholar 

  38. Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources, 1st edition. Elsevier

  39. Vollhardt KPC, Schore NE (2004) Química Orgânica: estrutura e função, 4th edn. Bookman, Porto Alegre

    Google Scholar 

  40. Javni I, Petrovic ZS, Guo A, Fuller R (2000) J Appl Polym Sci 77:1723–1734

    Article  CAS  Google Scholar 

  41. Sharma V, Kundu PP (2008) Prog Polym Sci 33:1199–1215

    Article  CAS  Google Scholar 

  42. Pawlik H, Prociak A (2012) J Polym Environ 20:438–445

    Article  CAS  Google Scholar 

  43. Ronda JC, Lligadas G, Galià M, Cádiz V (2011) Eur J Lipid Sci Technol 113:46–58

    Article  CAS  Google Scholar 

  44. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, New York

    Google Scholar 

  45. Pielichowski K, Njuguna J (2005) Thermal degradadation of polimeric materials, 1st edn. Rapra Technology, United Kingdom

    Google Scholar 

  46. John J, Bhattacharya M, Turner RB (2002) J Appl Polym Sci 86:3097–3107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Council of Technological and Scientific Development (CNPq), the Institute of Chemistry at the University of Brasilia (IQ/UnB) and Coordination of Improvement of Higher Education Personnel (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseany de Vasconcelos Vieira Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vasconcelos Vieira Lopes, R., Loureiro, N.P.D., Pezzin, A.P.T. et al. Synthesis of polyols and polyurethanes from vegetable oils–kinetic and characterization. J Polym Res 20, 238 (2013). https://doi.org/10.1007/s10965-013-0238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0238-x

Keywords

Navigation