Skip to main content
Log in

The preparation of hollow silica spheres with mesoporous shell via polystyrene emulsion latex template and the investigation of ascorbic acid release behavior

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the emulsifier-free polymerization was employed to prepare polystyrene (PS) latex particles. When the styrene conversion of 80 % was reached, appropriate amounts of methacryl oxypropyl trimethoxy silane (MPS) and divinylbenzene (DVB) were added to the emulsion solution. Emulsion particle surfaces bear silanol functional groups that facilitate the rapid reaction with silica precursor solution, which is formed through the hydrolysis of tetraethyl orthosilicate (TEOS) and silanol groups of MPS on the emulsion surface. Consequently, a core-shell structure with PS core and silica shell structure was developed. Using extraction and calcination to remove the central polystyrene core, a hollow glass sphere with porous shell structure was obtained. Finally, ascorbic acid was placed and encapsulated in these hollow glass spheres, as inspected by SEM and carbon element mapping images, to examine their controlled release behavior. The cumulative release percentage was analyzed using the Higuchi model, a zero-order model, and a first-order model for kinetic study of release behavior. Results show that the zero order and first order models describe the release kinetics of ascorbic acid equally well for hollow glass spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gole JL, Wang ZL, Dai ZR, Stout J, White M (2003) Colloid Polym Sci 281:673–685

    Article  CAS  Google Scholar 

  2. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  3. Devolt MH, Esteve D, Urbina C (1992) Nature 360:547–553

    Article  Google Scholar 

  4. Klein DL, Roth R, Lim AKL, Alivisatos AP, McEuen PL (1997) Nature 389:699–701

    Article  CAS  Google Scholar 

  5. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Hadden RC (1998) Science 282:95–98

    Article  CAS  Google Scholar 

  6. Sousa A, Souza KC, Sousa EMB (2008) Acta Biomater 4:671–679

    Article  CAS  Google Scholar 

  7. Ho A, Chang J, Chin W-K, Hsieh HT (2006) J Polym Res 13:285–291

    Article  CAS  Google Scholar 

  8. Liu W, Zhang Z (2011) J Polym Res 18:993–1000

    Article  CAS  Google Scholar 

  9. Borthakur LJ, Konwer S, Das R, Dolui SK (2011) J Polym Res 18:1207–1215

    Article  CAS  Google Scholar 

  10. Xu W, An Q, Hao L, Sun Z, Zhao W (2013) J Polym Res 20:69

    Article  Google Scholar 

  11. Wang W, Jie X, Fei M, Jiang H (2011) J Polym Res 18:13–17

    Article  Google Scholar 

  12. Chen M, Zhou S, Wu L, Xie S, Chen Y (2005) Macromol Chem Phys 206:1896–1902

    Article  CAS  Google Scholar 

  13. Tan MN, Park YS (2009) J Ind Eng Chem 15:359–369

    Article  Google Scholar 

  14. Lu Y, McLellan J, Xia Y (2004) Langmuir 20:3464–3470

    Article  CAS  Google Scholar 

  15. Deng Z, Chen M, Zhou S, You B, Wu L (2006) Langmuir 22:6403–6407

    Article  CAS  Google Scholar 

  16. Yuan J, Wan D, Yang Z (2008) J Phys Chem C 112:17156–17160

    Article  CAS  Google Scholar 

  17. Leng W, Chen M, Zhou S, Wu L (2010) Langmuir 26:14271–14275

    Article  CAS  Google Scholar 

  18. Tissot I, Reymond JP, Lefebvre F, Bourgeat-Lami E (2002) Chem Mater 14:1325–1331

    Article  CAS  Google Scholar 

  19. Ding X, Yu K, Jiang Y, Hari-Bara, Zhang H, Wang Z (2004) Mater Lett 58:3618–3621

    Article  CAS  Google Scholar 

  20. Ni KF, Shan GG, Weng ZX, Sheibat-Othman N, Fevotte G (2005) Macromolecules 38:7321–7329

    Article  CAS  Google Scholar 

  21. Ni KF, Bourgeat-Lami E, Sheibat-Othman N, Shan G, Fevotte G (2008) Macromol Symp 271:120–128

    Article  CAS  Google Scholar 

  22. Chen M, Lu L, Zhou S, You B (2006) Adv Mater 18:801–806

    Article  CAS  Google Scholar 

  23. Xu M, Li W, Du M, Shao X, Yin Y, Zhao L, Pu X (2010) Mater Lett 64:931–934

    Article  CAS  Google Scholar 

  24. Cao S, Jin X, Yuna X, Wu W, Hu J, Sheng W (2010) J Polym Sci A Polym Chem 48:1332–1338

    Article  CAS  Google Scholar 

  25. Lee KC, Wi HA (2010) J Appl Polym Sci 115:3092–3102

    Article  CAS  Google Scholar 

  26. Lin HP, Mou CY (2002) Account Chem Res 35:927–935

    Article  CAS  Google Scholar 

  27. Chen JF, Ding HM, Wang JX, Shao L (2004) Biomater 25:723–727

    Article  Google Scholar 

  28. Horcajada P, Serre C, Vallet-Reg M, Sebban M, Taulelle F, Ferey G (2006) Angew Chem 45:5974–5978

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the financial support from the Ministry of Economic Affairs of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Yue Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, BH., Hsieh, ML., Chen, HY. et al. The preparation of hollow silica spheres with mesoporous shell via polystyrene emulsion latex template and the investigation of ascorbic acid release behavior. J Polym Res 20, 220 (2013). https://doi.org/10.1007/s10965-013-0220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0220-7

Keywords

Navigation