Skip to main content
Log in

Molecular dynamics study of pair interactions, interfacial microstructure, and nanomorphology of C60/MEH-PPV hybrids

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Atomistic molecular dynamics (AMD) simulations are utilized to simultaneously explore the detailed pair interactions, interfacial microstructure, and nanoscale (phase-separated) morphology of a series of thermally annealed C60-MEH-PPV (monomer and oligomer) (poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene)) hybrids. The present study provides essential details for understanding fundamental particle interactions that regulate the microscopic (structural and morphological) features of a standard polymer-fullerene material, paving the way to the eventual goal of capturing the photovoltaic physics of similar hybrid systems widely viewed as a potential alternative to the conventional (inorganic) semiconducting materials. Specifically, we show that two dominant interfacial pair C60-MEH-PPV-mer configurations—denoted as “face-on” or “side-on” motif—can thus be identified. These two motifs seem to be rather universal, and are shown to be dictated by many-body energetic forces in a condensed phase, as they display clear independence on the effects of system temperature, blending ratio, and chain connectivity. Importantly, the pair configurations (which should embed precise information on separation distance and mutual alignment) so unraveled provide an unambiguous first step toward resolving quantum-mechanic properties relevant to the photovoltaic performance of a hybrid material. Although the simulation length scale is limited for one to unequivocally reveal bulk phase behavior, the results on nanoscale phase morphologies are in accord with recent experimental trends regarding the effects of polymer molecular weight and blending ratio. Future outlooks of utilizing the established molecular system for predicting light adsorption and interfacial charge behavior are remarked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang CW (1986) Appl Phys Lett 48:183–185

    Article  CAS  Google Scholar 

  2. Yu G, Pakbaz K, Heeger AJ (1994) Appl Phys Lett 64:3422–3424

    Article  CAS  Google Scholar 

  3. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789–1791

    Article  CAS  Google Scholar 

  4. Köhler A, Wittmann HF, Friend RH, Khan MS, Lewis J (1996) Synth Met 77:147–150

    Article  Google Scholar 

  5. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) Appl Phys Lett 78:841–843

    Article  CAS  Google Scholar 

  6. Son HJ, He F, Carsten B, Yu L (2011) J Mater Chem 21:18934–18945

    Article  CAS  Google Scholar 

  7. Liu J, Shi Y, Yang Y (2001) Adv Funct Mater 11:420–424

    Article  CAS  Google Scholar 

  8. Ltaief A, Davenas J, Bouazizi A, Ben Chaâbane R, Alcouffe P, Ben Ouada H (2005) Mater Sci Eng C 25:67–75

    Article  Google Scholar 

  9. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45–61

    Article  CAS  Google Scholar 

  10. Jin H, Hou Y, Teng F, Kopola P, Tuomikoski M, Maaninen A (2009) Sol Energy Mater Sol Cells 93:289–294

    Article  CAS  Google Scholar 

  11. Po R, Maggini M, Camaioni N (2009) J Phys Chem C 114:695–706

    Article  Google Scholar 

  12. Xu Z, Chen LM, Yang G, Huang CH, Hou J, Wu Y, Li G, Hsu CS, Yang Y (2009) Adv Funct Mater 19:1227–1234

    Article  CAS  Google Scholar 

  13. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB (1996) Appl Phys Lett 68:3120–3122

    Article  CAS  Google Scholar 

  14. Markov DE, Amsterdam E, Blom PWM, Sieval AB, Hummelen JC (2005) J Phys Chem A 109:5266–5274

    Article  CAS  Google Scholar 

  15. Veldman D, Meskers SCJ, Janssen RAJ (2009) Adv Funct Mater 19:1939–1948

    Article  CAS  Google Scholar 

  16. Verlaak S, Beljonne D, Cheyns D, Rolin C, Linares M, Castet F, Cornil J, Heremans P (2009) Adv Funct Mater 19:3809–3814

    Article  CAS  Google Scholar 

  17. Deibel C, Dyakonov V (2010) Rep Prog Phys 73:096401

    Article  Google Scholar 

  18. Mayer AC, Toney MF, Scully SR, Rivnay J, Brabec CJ, Scharber M, Koppe M, Heeney M, McCulloch I, McGehee MD (2009) Adv Funct Mater 19:1173–1179

    Article  CAS  Google Scholar 

  19. Beal RM, Stavrinadis A, Warner JH, Smith JM, Assender HE, Watt AAR (2010) Macromolecules 43:2343–2348

    Article  CAS  Google Scholar 

  20. Drummy LF, Davis RJ, Moore DL, Durstock M, Vaia RA, Hsu JWP (2011) Chem Mater 23:907–912

    Article  CAS  Google Scholar 

  21. Lee CK, Hua CC, Chen SA (2008) J Phys Chem B 112:11479–11489

    Article  CAS  Google Scholar 

  22. Lee CK, Hua CC, Chen SA (2009) J Phys Chem B 113:15937–15948

    Article  CAS  Google Scholar 

  23. Lee CK, Hua CC, Chen SA (2011) Macromolecules 44:320–324

    Article  Google Scholar 

  24. Lee CK, Hua CC, Chen SA (2012) J Chem Phys 136:084901

    Article  Google Scholar 

  25. Lee CK, Hua CC, Chen SA (2010) J Chem Phys 133:064902

    Article  Google Scholar 

  26. Lee CK, Hua CC (2011) Nanomorphologies in conjugated polymer solutions and films for application in optoelectronics, resolved by multiscale computation. In: Predeep P (ed) Optoelectronics - materials and techniques. InTech, p 261--284

  27. Dantanarayana V, Huang DM, Staton JA, Moulé AJ, Faller R (2012) Multi-scale modeling of bulk heterojunctions for organic photovoltaic applications. In: Fthenakis V (ed) Third generation photovoltaics. InTech, p 29--60

  28. Yang H, Zhao XJ, Lu ZY, Yan FD (2009) J Chem Phys 131:234906

    Article  Google Scholar 

  29. Huang DM, Faller R, Do K, Moulé AJ (2010) J Chem Theory Comput 6:526–537

    Article  CAS  Google Scholar 

  30. Huang DM, Moulé AJ, Faller R (2011) Fluid Phase Equilib 302:21–25

    Article  CAS  Google Scholar 

  31. Lee CK, Pao CW, Chu CW (2011) Energy Environ Sci 4:4124–4132

    Article  CAS  Google Scholar 

  32. Nelson J (2003) Phys Rev B 67:155209

    Article  Google Scholar 

  33. Watkins PK, Walker AB, Verschoor GLB (2005) Nano Lett 5:1814–1818

    Article  CAS  Google Scholar 

  34. Groves C, Kimber RGE, Walker AB (2010) J Chem Phys 133:144110

    Article  Google Scholar 

  35. Groves C, Blakesley JC, Greenham NC (2010) Nano Lett 10:1063–1069

    Article  CAS  Google Scholar 

  36. Meng L, Shang Y, Li Q, Li Y, Zhan X, Shuai Z, Kimber RGE, Walker AB (2010) J Phys Chem B 114:36–41

    Article  CAS  Google Scholar 

  37. Yang HC, Hua CY, Kuo MY, Huang Q, Chen CL (2004) Chemphyschem Eur J Chem Phys Phys Chem 5:373–381

    Article  CAS  Google Scholar 

  38. Street R, Northrup J, Salleo A (2005) Phys Rev B 71:165202

    Article  Google Scholar 

  39. Kirkpatrick J, Marcon V, Nelson J, Kremer K, Andrienko D (2007) Phys Rev Lett 98:227402

    Article  Google Scholar 

  40. Northrup J (2007) Phys Rev B 76:245202

    Article  Google Scholar 

  41. Yang P, Batista ER, Tretiak S, Saxena A, Martin RL, Smith DL (2007) Phys Rev B 76:241201

    Article  Google Scholar 

  42. Huang YS, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss JM, Deleener C, Friend RH, Beljonne D (2008) Nat Mater 7:483–489

    Article  CAS  Google Scholar 

  43. Lan YK, Huang CI (2008) J Phys Chem B 112:14857–14862

    Article  CAS  Google Scholar 

  44. Cheung DL, McMahon DP, Troisi A (2009) J Am Chem Soc 131:11179–11186

    Article  CAS  Google Scholar 

  45. Lan Y-K, Huang C-I (2009) J Phys Chem B 113:14555–14564

    Article  CAS  Google Scholar 

  46. Nelson J, Kwiatkowski JJ, Kirkpatrick J, Frost JM (2009) J Acc Chem Res 42:1768–1778

    Article  CAS  Google Scholar 

  47. Vukmirović N, Wang LW (2009) J Phys Chem B 113:409–415

    Article  Google Scholar 

  48. Vukmirović N, Wang L-W (2009) Nano Lett 9:3996–4000

    Article  Google Scholar 

  49. Aryanpour K, Psiachos D, Mazumdar S (2010) Phys Rev B 81:085407

    Article  Google Scholar 

  50. Cheung DL, Troisi A (2010) J Phys Chem C 114:20479–20488

    Article  CAS  Google Scholar 

  51. Loutfy RO, Wexler EM (2001) Ablative and flame-retardant properties of fullerenes. In: Osawa E (ed) Perspectives of fullerene nanotechnology. Kluwer Academic Pub, p 275

  52. Liu Y, Liu MS, Li XC, Jen AKY (1998) Chem Mater 10:3301–3304

    Article  CAS  Google Scholar 

  53. Lee TW, Park OO (2000) Adv Mater 12:801–804

    Article  CAS  Google Scholar 

  54. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  55. Hoover WG (1986) Phys Rev A 34:2499–2500

    Article  Google Scholar 

  56. Todorov IT, Smith W, Trachenko K, Dove MT (2006) J Mater Chem 16:1911–1918

    Article  CAS  Google Scholar 

  57. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  58. Lee CK, Hua CC, Chen SA (2013) Macromolecules 46:1932–1938

    Article  CAS  Google Scholar 

  59. Cheng A, Klein ML (1991) J Phys Chem 95:6750–6751

    Article  CAS  Google Scholar 

  60. Abramo MC, Caccamo C (1996) J Phys Chem Solids 57:1751–1755

    Article  CAS  Google Scholar 

  61. Abramo MC, Caccamo C, Costa D, Pellicane G, Ruberto R (2004) Phys Rev E 69:031112

    Article  CAS  Google Scholar 

  62. Heiney PA, Fischer JE, McGhie AR, Romanow WJ, Denenstein AM, McCauley JP II, Smith AB III, Cox DE (1991) Phys Rev Lett 66:2911–2914

    Article  CAS  Google Scholar 

  63. Yang CY, Heeger AJ (1996) Synth Met 83:85–88

    Article  CAS  Google Scholar 

  64. Gao J, Hide F, Wang H (1997) Synth Met 84:979–980

    Article  CAS  Google Scholar 

  65. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  66. Ma W, Kim JY, Lee K, Heeger AJ (2007) Macromol Rapid Commun 28:1776–1780

    Article  CAS  Google Scholar 

  67. Ballantyne AM, Chen L, Dane J, Hammant T, Braun FM, Heeney M, Duffy W, McCulloch I, Bradley DDC, Nelson J (2008) Adv Funct Mater 18:2373–2380

    Article  CAS  Google Scholar 

  68. Huang J-H, Chen F-C, Chen C-L, Huang AT, Hsiao Y-S, Teng C-M, Yen F-W, Chen P, Chu C-W (2011) Org Electron 12:1755–1762

    Article  CAS  Google Scholar 

  69. Kim JY, Frisbie CD (2008) J Phys Chem C 112:17726–17736

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Science Council of ROC. Resources provided by the National Center for High-Performance Computing are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi C. Hua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.I., Hsu, C.H., Hua, C.C. et al. Molecular dynamics study of pair interactions, interfacial microstructure, and nanomorphology of C60/MEH-PPV hybrids. J Polym Res 20, 188 (2013). https://doi.org/10.1007/s10965-013-0188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0188-3

Keywords

Navigation