Skip to main content

Theoretical Aspects of XLPE-Based Blends and Nanocomposites

  • Chapter
  • First Online:
Crosslinkable Polyethylene Based Blends and Nanocomposites

Abstract

The structure–property relation is the key to all applications in macromolecular systems. Computational simulations are used for better understanding of such structure–property relations. This molecular modeling has now become an indispensable complementary tool for experimental scientific research. The XLPE/nanocomposites studies are mostly done by quantum theories due to the better understanding of electronic structure levels; however, some calculations are done using classical mechanics. But classical mechanics and quantum mechanics are insufficient for certain analysis, and these defects point out the possibility to explore the studies in multi-scale theories for this field. The theoretical section of this chapter provides all the detailed description of most common theoretical techniques for the better understanding of such studies in XLPE/nanocomposites and blends. Another section of this chapter provides a short survey of the general principles and selected applications of molecular modeling in XLPE/nanocomposites and blends. The selection of efficient nanofillers and polymers for blends are suggested, and discussion on the mechanisms for electrical treeing by means of molecular modeling is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas J, Joseph B, Jose JP et al (2019) Recent Advances in Cross-linked Polyethylene-based Nanocomposites for High Voltage Engineering Applications: A Critical Review. Ind Eng Chem Res 58:20863–20879

    Article  CAS  Google Scholar 

  2. Hu CY, Yoon TR (2018) Recent updates for biomaterials used in total hip arthroplasty. Biomater Res 22:1–12. https://doi.org/10.1186/s40824-018-0144-8

    Article  CAS  Google Scholar 

  3. Bachrach SM (2006) Computational Organic Chemistry. Wiley, Hoboken, NJ, USA

    Google Scholar 

  4. Morin D (2008) Introduction to Classical Mechanics With Problems and Solutions

    Google Scholar 

  5. Lowe JP, Peterson KA (2006) Quantum chemistry. Elsevier Academic Press

    Google Scholar 

  6. Lewars EG, Lewars EG (2011) An Outline of What Computational Chemistry Is All About. Computational Chemistry. Springer, Cham, pp 1–7

    Chapter  Google Scholar 

  7. Altona C, Faber DH (2007) Empirical force field calculations. Dynamic Chemistry. Springer, Berlin, Heidelberg, pp 1–38

    Google Scholar 

  8. Kettering CF, Shutts LW, Andrews DH (1930) A representation of the dynamic properties of molecules by mechanical models. Phys Rev 36:531–543. https://doi.org/10.1103/PhysRev.36.531

    Article  CAS  Google Scholar 

  9. Westheimer FH, Shookhoff MW (1940) The Electrostatic Influence of Substituents on Reactions Rates. I. J Am Chem Soc 62:269–275. https://doi.org/10.1021/ja01859a009

    Article  CAS  Google Scholar 

  10. Hendrickson JB (1961) Molecular geometry. I. Machine computation of the common rings. J American Chem Soc 83(22):4537-4547

    Google Scholar 

  11. Wiberg KB (1965) A Scheme for Strain Energy Minimization. Application to the Cycloalkanes1

    Google Scholar 

  12. Allinger NL (1976) Calculation of Molecular Structure and Energy by Force-Field Methods. Adv Phys Org Chem 13:1–82. https://doi.org/10.1016/S0065-3160(08)60212-9

    Article  CAS  Google Scholar 

  13. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  Google Scholar 

  14. Mayo SL, Olafson BD, Iii WAG (1990) DREIDING: A Generic Force Field for Molecular Simulations. BioDesign, Inc

    Google Scholar 

  15. Allinger NL, Yuh YH, Lii J-H (1976) The Consistent Force Field. American Chemical Society

    Google Scholar 

  16. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733. https://doi.org/10.1002/jcc.540110605

    Article  CAS  Google Scholar 

  17. Berendsen HJC, Van Der Spoel D, Van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation PROGRAM SUMMARY Title of program: GROMACS version 1.0

    Google Scholar 

  18. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c490:AID-JCC1%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  19. Sun H (1998) The COMPASS force field: Parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246. https://doi.org/10.1016/S1089-3156(98)00042-7

    Article  CAS  Google Scholar 

  20. Damm W, Frontera A, Tirado-Rives J, Jorgensen WL (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18:1955–1970. https://doi.org/10.1002/(SICI)1096-987X(199712)18:16%3c1955:AID-JCC1%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  21. Ponder J (2015) TINKER v6. 3, 2014

    Google Scholar 

  22. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  23. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459–466. https://doi.org/10.1063/1.1730376

    Article  CAS  Google Scholar 

  24. Fitzgerald G, DeJoannis J, Meunier M (2015) Multiscale modeling of nanomaterials: Recent developments and future prospects. Elsevier

    Google Scholar 

  25. Binder K, Heermann D, Roelofs L et al (1993) Monte Carlo Simulation in Statistical Physics. Comput Phys 7:156. https://doi.org/10.1063/1.4823159

    Article  Google Scholar 

  26. Dong K, Liu X, Dong H et al (2017) Multiscale Studies on Ionic Liquids. Chem Rev 117:6636–6695. https://doi.org/10.1021/acs.chemrev.6b00776

    Article  CAS  Google Scholar 

  27. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824. https://doi.org/10.1021/jp071097f

    Article  CAS  Google Scholar 

  28. Monticelli L, Kandasamy SK, Periole X et al (2008) The MARTINI coarse-grained force field: Extension to proteins. J Chem Theory Comput 4:819–834. https://doi.org/10.1021/ct700324x

    Article  CAS  Google Scholar 

  29. Shinoda W, DeVane R, Klein ML (2007) Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simul 33:27–36. https://doi.org/10.1080/08927020601054050

    Article  CAS  Google Scholar 

  30. Shinoda W, Devane R, Klein ML (2008) Coarse-grained molecular modeling of non-ionic surfactant self-assembly. Soft Matter 4:2454–2462. https://doi.org/10.1039/b808701f

    Article  CAS  Google Scholar 

  31. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chemie—Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  32. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249. https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  Google Scholar 

  33. Sherwood P, De Vries AH, Guest MF et al (2003) QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. J Mol Struct THEOCHEM 632:1–28. https://doi.org/10.1016/s0166-1280(03)00285-9

    Article  CAS  Google Scholar 

  34. Svensson M, Humbel S, Froese RDJ et al (1996) ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363. https://doi.org/10.1021/jp962071j

    Article  CAS  Google Scholar 

  35. Maseras F, Morokuma K (1995) IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170–1179. https://doi.org/10.1002/jcc.540160911

    Article  CAS  Google Scholar 

  36. Dong K, Liu X, Dong H et al (2015) A new QM/MM method oriented to the study of ionic liquids. J Comput Chem 36:1893–1901. https://doi.org/10.1002/jcc.24023

    Article  CAS  Google Scholar 

  37. Eichler U, Kölmel CM, Sauer J (1997) Combining ab initio techniques with analytical potential functions for structure predictions of large systems: Method and application to crystalline silica polymorphs. J Comput Chem 18:463–477. https://doi.org/10.1002/(SICI)1096-987X(199703)18:4%3c463:AID-JCC2%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  38. Sherwood P, De Vries AH, Collins SJ et al (1997) Computer simulation of zeolite structure and reactivity using embedded cluster methods. Faraday Discuss 106:79–92. https://doi.org/10.1039/a701790a

    Article  CAS  Google Scholar 

  39. Théry V, Rinaldi D, Rivail J-L et al (1994) Quantum mechanical computations on very large molecular systems: The local self-consistent field method. J Comput Chem 15:269–282. https://doi.org/10.1002/jcc.540150303

    Article  Google Scholar 

  40. Gao J, Amara P, Alhambra C, Field MJ (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102:4714–4721. https://doi.org/10.1021/jp9809890

    Article  CAS  Google Scholar 

  41. Thiel W (2009) QM/MM Methodology: Fundamentals, Scope, and Limitations. Multiscale Simul Methods Mol Sci 42:203–214

    Google Scholar 

  42. Process C, Zhang H, Shang Y, et al (2018) Theoretical Study on the Grafting Reaction of Maleimide to Polyethylene in the UV Radiation. https://doi.org/10.3390/polym10091044

  43. Uehara H, Iwata S, Sekii Y, et al (2018) Suppression of electrical tree initiation by antioxidant and ultraviolet absorber, using a density-functional study. Annu Rep - Conf Electr Insul Dielectr Phenomena, CEIDP 2017:761–764. https://doi.org/10.1109/CEIDP.2017.8257509

  44. Zhang H, Shang Y, Zhao H et al (2017) Theoretical study on the reaction of maleic anhydride in the UV radiation cross-linking process of polyethylene. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2017.11.045

    Article  Google Scholar 

  45. Wang Y, Zhang H, Zhao H, et al (2018) Theoretical study on the grafting reaction of maleimide and its derivatives to polyethylene in the UV radiation cross-linking process

    Google Scholar 

  46. Zhao H, Chen J, Zhang H (2017) Theoretical study on the reaction of triallyl isocyanurate in the UV radiation cross-linking of polyethylene. RSC Adv 7:37095–37104. https://doi.org/10.1039/C7RA05535H

    Article  CAS  Google Scholar 

  47. Li C, Zhao H, Zhang H et al (2018) The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations. J Mol Model 24:1–11. https://doi.org/10.1007/s00894-018-3618-7

    Article  CAS  Google Scholar 

  48. Wang W, Li S, Tanaka Y, Takada T (2019) Interfacial charge dynamics of cross-linked polyethylene/ethylene-propylene-diene dual dielectric polymer as revealed by energy band structure. IEEE Trans Dielectr Electr Insul 26:1755–1762. https://doi.org/10.1109/TDEI.2019.008122

    Article  CAS  Google Scholar 

  49. Chen X, Yu L, Dai C et al (2019) Enhancement of insulating properties of polyethylene blends by delocalization type voltage stabilizers. IEEE Trans Dielectr Electr Insul 26:2041–2049. https://doi.org/10.1109/TDEI.2019.008337

    Article  CAS  Google Scholar 

  50. Song S, Zhao H, Zheng X et al (2018) A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. R Soc Open Sci 5:170772. https://doi.org/10.1098/rsos.170772

    Article  CAS  Google Scholar 

  51. Han B, Jiao M, Li C et al (2015) QM/MD simulations on the role of SiO2 in polymeric insulation materials. RSC Adv 6:555–562. https://doi.org/10.1039/c5ra19512h

    Article  Google Scholar 

  52. Zheng X, Liu Y, Wang Y (2018) Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations. J Mol Model 24:1–10. https://doi.org/10.1007/s00894-018-3742-4

    Article  CAS  Google Scholar 

  53. Zhang H, Liu Y, Du X et al (2019) Effect of SiC nano-size fillers on the aging resistance of XLPE insulation: A first-principles study. J Mol Graph Model 93:107438. https://doi.org/10.1016/j.jmgm.2019.107438

    Article  CAS  Google Scholar 

  54. Li J, Han C, Du B, Takada T (2020) Deep trap sites suppressing space charge injection in polycyclic aromatic compounds doped XLPE composite. IET Nanodielectrics 3:10–13. https://doi.org/10.1049/iet-nde.2019.0035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakiah Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, M.E., Vidya, R., Thomas, J., Ahmad, Z. (2021). Theoretical Aspects of XLPE-Based Blends and Nanocomposites. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene Based Blends and Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0486-7_11

Download citation

Publish with us

Policies and ethics