Skip to main content

Advertisement

Log in

Fe3O4/FePc/Pc magnetic composites with high mechanical properties and thermal stabilities by in situ preparation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel kind of organic–inorganic hybrid magnetic composites was prepared via in situ polymerization between Fe3O4/iron phthalocyanine oligomer (Fe3O4/FePc) hybrid microspheres and phthalocyanine (Pc) prepolymers in the presence of aromatic amine (3-APN). The Fe3O4/FePc hybrid microspheres exhibited loose interpenetrating network structures with diameters of 180 ± 20 nm. Magnetic properties of final Fe3O4/FePc/Pc composites investigated by the vibrating sample magnetometer (VSM) indicated that the magnetic composites possessed considerable increased magnetism with the increase of Fe3O4/FePc content. The saturation magnetization of the magnetic composites with 15 wt.% content of Fe3O4/FePc was 3.500 emu/g (1,590 % increase) in comparison with that of composites with 5 wt.% Fe3O4/FePc content. Mechanical and thermal properties of the magnetic composites were also investigated. The flexural strength and modulus increase from 53.8 MPa and 3.47GPa in Pc composite to 70.4 MPa and 4.18GPa in Fe3O4/FePc/Pc composite with 15 wt.% Fe3O4/FePc content, leading to 30.8 % and 20.4 % increase respectively. The mechanical enhancements can be largely attributed to the good dispersion and finer compatibility of Fe3O4/FePc hybrid microspheres and Pc matrices, which were confirmed by SEM. Additionally, all the magnetic composites obtained demonstrated excellent thermal stability up to 550 °C in air. Thus the Fe3O4/FePc/Pc magnetic composites with considerable magnetic properties as well as outstanding mechanical properties and excellent thermal stabilities can be used in advanced functional and structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094

    Article  CAS  Google Scholar 

  2. Yang L, Xu YS, Qiu SJ (2012) Polyacrylate/SiO2 nanocomposites prepared by combining non-aqueous sol–gel process and miniemulsion polymerization. J Polym Res 19:doi:10.1007/s10965-012-0030-3

  3. Abdollahi M, Rouhani M (2012) Hydrophilic polymer/fumed silica hybrid nanoparticles synthesized via surface-initiated redox polymerization. J Polym Res 19:doi:10.1007/s10965-012-0005-4

  4. Montazer M, Malekzadeh SB (2012) Electrospun antibacterial nylon nanofibers through in situ synthesis of nanosilver: preparation and characteristics. J Polym Res 19:doi:10.1007/s10965-012-9980-8

  5. Irwin PC, Cao Y, Bansal A, Schadler LS (2003) Thermal and mechanical properties of polyimide nanocomposites. IEEE Xplore 10:120–123

    Google Scholar 

  6. Chikazumi S, Taketomi S, Ukita M, Miyajima H, Setaogawa M, Kurihara Y (1987) Physics of magnetic fluids. J Magn Magn Mater 65:245–251

    Article  CAS  Google Scholar 

  7. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  8. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  9. Li Z, Wei L, Gao MY, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17:1001–1005

    Article  Google Scholar 

  10. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Article  Google Scholar 

  11. Takafuji M, Ide S, Ihara H, Xu ZH (2004) Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983

    Article  CAS  Google Scholar 

  12. Keller TM, Roland CM (1992) High temperature adhesive. US Patent 7841945.

  13. Keller TM (1986) Proceedings of the 18th International SAMPE Technical Conference 31:528–534

    CAS  Google Scholar 

  14. Sastri SB, Armistead JP, Keller TM (1996) Phthalonitrile-carbon fiber composites. Polym Compos 17:816–822

    Article  CAS  Google Scholar 

  15. Lei YJ, Zhao R, Hu GH, Yang XL, Liu XB (2012) Electromagnetic, microwave-absorbing properties of iron-phthalocyanine and its composites based on phthalocyanine polymer. J Mater Sci 47:4473–4480

    Article  CAS  Google Scholar 

  16. Dominguez DD, Keller TM (2007) Properties of phthalonitrile monomer blends and thermosetting phthalonitrile copolymers. Polymer 48:91–97

    Article  CAS  Google Scholar 

  17. Caruso F, Spasova M, Sucha A, Giersig, Caruso RA (2001) Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater 13:109–116

    Article  CAS  Google Scholar 

  18. Lu S, Forcada J (2006) Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. J Polym Sci Part A: Polym Chem 44:4187–4203

    Article  CAS  Google Scholar 

  19. Horak D (2001) Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. J Polym Sci Part A: Polym Chem 39:3707–3715

    Article  CAS  Google Scholar 

  20. Cocker TM, Fee CJ, Evans RA (1997) Preparation of magnetically susceptible polyacrylamide/magnetite beads for use in magnetically stabilized fluidized bed chromatography. Biotechnol Bioeng 53:79–87

    Article  CAS  Google Scholar 

  21. Muller-Schulte H (2001) US Patent 6204033

  22. Lin H, Watanabe Y, Kimura M, Hanabusa K, Shirai H (2003) Preparation of magnetic poly (vinylalcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix. J Appl Polym Sci 87:1239–1247

    Article  CAS  Google Scholar 

  23. Jia K, Zhao R, Zhong JC, Liu XB (2010) Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres. J Magn Magn Mater 8:2167–2171

    Article  Google Scholar 

  24. Zhao R, Jia K, Wei JJ, Pu JX, Liu XB (2010) Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater Lett 64:457–459

    Article  CAS  Google Scholar 

  25. Pharm KN, Fullston D, Sagoe-Crentsil KJ (2007) RETRACTED: surface modification for stability of nano-sized silica colloids. Colloid Interface Sci 315:123–127

    Article  Google Scholar 

  26. Yang YN, Zhang HX, Wang P, Zheng Q, Li J (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membr Sci 288:231–238

    Article  CAS  Google Scholar 

  27. Xu MZ, Meng FB, Zhao R, Zhan YQ, Lei YJ, Liu XB (2011) Iron phthalocyanine oligomer/Fe3O4 hybrid microspheres and their microwave absorption property. J Magn Magn Mater 323:2174–2178

    Article  CAS  Google Scholar 

  28. Hong ZK, Zhang PB, Liu AX (2007) Composites of poly (lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J Biomed Mater Res 81A:515–522

    Article  CAS  Google Scholar 

  29. Qiu XY, Hong ZK, Hu JL (2005) Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules 6:1193–1199

    Article  CAS  Google Scholar 

  30. Jia K, Zhao R, Zhong JC, Liu XB (2010) Preparation and characterization of iron phthalocyanine polymer magnetic materials. J Mater Sci: Mater Electron 21:708–712

    Article  CAS  Google Scholar 

  31. Snow AW, Giffith JR, Marullo NP (1984) Syntheses and characterization of heteroatom-bridged metal-free phthalocyanine network polymers and model compounds. Macromoleculaes 17:1614–1624

    Article  CAS  Google Scholar 

  32. Li HM, Ye XK, Wu Y (2001) Effect of FePc structure on the activity in the oxidation of cyclohexene catalyzed by Pd (OAc) 2/HQ/FePc. Acta Phys Chim Sin 17:432–437

    CAS  Google Scholar 

  33. Ercolani C, Gardini M, Monacelli F, Pennesi G, Rossi G (1983) Interaction of (phthalocyaninato) iron (II) with molecular oxygen: synthesis and characterization of two different crystalline forms of (.mu.-oxo) bis [(phthalocyaninato) iron (III)]. Inorg Chem 22:2584–2589

    Article  CAS  Google Scholar 

  34. Zhu LP, Xiao HM, Zhang WD, Yang Y, Fu SY (2008) Synthesis and characterization of novel three-dimensional metallic co dendritic superstructures by a simple hydrothermal reduction route. Cryst Growth Des 8:1113–1117

    Article  CAS  Google Scholar 

  35. Hernández R, Zamora-Mora V, Sibaja-Ballestero M, Vega-Baudrit J, López D, Mijangos C (2009) Influence of iron oxide nanoparticles on the rheological properties of hybrid chitosan ferrogels. J Colloid Interface Sci 339:53–59

    Article  Google Scholar 

  36. Andrij P, Sanchita B, Yan L, Volodymyr B, Hans-Juergen PA (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20:10706–10711

    Article  Google Scholar 

  37. Wu CZ, Xie Y, Lei LY, Hu SQ, OuYang CZ (2006) Synthesis of new-phased VOOH hollow “Dandelions” and their application in lithium-ion batteries. Adv Mater 18:1727–1732

    Article  CAS  Google Scholar 

  38. Wei JJ, Xu MZ, Zhang JD, Zhao R, Liu XB (2012) Only Ku-band microwave absorption by Fe3O4/ferrocenyl-CuPc hybrid nanospheres. J Magn Magn Mater 324:2696–2700

    Article  CAS  Google Scholar 

  39. Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, Ho TH, Guo ZH (2009) Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 50:4189–4198

    Article  CAS  Google Scholar 

  40. Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawcza KP (2008) Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett 10:735–745

    Article  Google Scholar 

  41. Yang XL, Wang ZC, Xu MZ, Zhao R, Liu XB (2013) Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: carbon fiber and graphene nanoplatelet. Mater Des 44:74–80

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank for financial support of this work from the National Natural Science Foundation (No. 51173021) and “863” National Major Program of High Technology (2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Hu, J., Zou, X. et al. Fe3O4/FePc/Pc magnetic composites with high mechanical properties and thermal stabilities by in situ preparation. J Polym Res 20, 170 (2013). https://doi.org/10.1007/s10965-013-0170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0170-0

Keywords

Navigation