Skip to main content
Log in

Preparation and assembly performance of colloidal particles of photonic crystals with controlled photonic band gaps

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Monodisperse microspheres with average particle size in the range of 100–600 nm, whose main monomer was styrene, were prepared by soap-free emulsion polymerization. The factors influencing polymer colloidal particle sizes and size distributions were investigated, including initiator concentration, polymerization temperature and hydrophilic monomer amount. Then, six kinds of polymer microspheres with average size from 153 nm to 565 nm were selected to grow colloid photonic crystal by vertical deposition method. Results showed that photonic band gaps could be effectively adjusted by changing the particle size. The obtained photonic crystals were highly ordered face-centered cubic structures. Furthermore, vertical deposition was only suitable for particles with average size less than 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Phys Rev Lett 58(20):2059–2062

    Article  CAS  Google Scholar 

  2. John S (1987) Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  3. Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) J Am Chem Soc 125(18):5292–5293

    Article  CAS  Google Scholar 

  4. Xu X, Goponenko AV, Asher SA (2008) J Am Chem Soc 130(10):3113–3119

    Article  CAS  Google Scholar 

  5. Xuan R, Wu Q, Yin Y, Ge J (2011) J Mater Chem 21(11):3672–3676

    Article  CAS  Google Scholar 

  6. Peng H, Wang S, Zhang Z, Xiong H, Li J, Chen L, Li Y (2012) J Agric Food Chem 60(8):1921–1928

    Article  CAS  Google Scholar 

  7. Zhang J-T, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) J Am Chem Soc 133(24):9152–9155

    Article  CAS  Google Scholar 

  8. Tsuji S, Kawaguchi H (2005) Langmuir 21(18):8439–8442

    Article  CAS  Google Scholar 

  9. Kang P, Ogunbo SO, Erickson D (2011) Langmuir 27(16):9676–9680

    Article  CAS  Google Scholar 

  10. Xia Y, Gates B, Yin Y, Lu Y (2000) Adv Mater 12(10):693–713

    Article  CAS  Google Scholar 

  11. Moon JH, Yang S (2010) Chem Rev 110(1):547–574

    Article  CAS  Google Scholar 

  12. Nozawa J, Tsukamoto K, Van Enckevort W, Nakamura T, Kimura Y, Miura H, Satoh H, Nagashima K, Konoto M (2011) J Am Chem Soc 133(23):8782–8785

    Article  CAS  Google Scholar 

  13. Stöber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26(1):62–69

    Article  Google Scholar 

  14. Wang W, Gu B, Liang L, Hamilton W (2003) J Phys Chem B 107(15):3400–3404

    Article  CAS  Google Scholar 

  15. Agrawal M, Fischer D, Gupta S, Zafeiropoulos NE, Pich A, Lidorikis E, Stamm M (2010) J Phys Chem C 114(39):16389–16394

    Article  CAS  Google Scholar 

  16. Bailey J, Sharp JS (2010) Eur Phys J E, Soft Matter 33(1):41–49

    Article  CAS  Google Scholar 

  17. Shamshiri M, Yousefi A, Pishvaei M, Ameri F (2012) J Polym Res 19(7):1–6

    Article  CAS  Google Scholar 

  18. Zhang X, Zhang J, Zhu D, Li X, Zhang X, Wang T, Yang B (2010) Langmuir 26(23):17936–17942

    Article  CAS  Google Scholar 

  19. Lu Y, Drechsler M (2009) Langmuir 25(22):13100–13105

    Article  CAS  Google Scholar 

  20. Sharma V, Xia D, Wong CC, Craig Carter W, Chiang Y-M (2011) J Mater Res 26(2):247

    Article  CAS  Google Scholar 

  21. Jiang P, Bertone J, Hwang K, Colvin V (1999) Chem Mater 11(8):2132–2140

    Article  CAS  Google Scholar 

  22. Shimmin RG, Dimauro AJ, Braun PV (2006) Langmuir 22(15):6507–6513

    Article  CAS  Google Scholar 

  23. Dziomkina NV, Vancso GJ (2005) Soft Matter 1(4):265–279

    Article  CAS  Google Scholar 

  24. Mcmullan JM, Wagner NJ (2012) Langmuir 28(9):4123–4130

    Article  CAS  Google Scholar 

  25. Xie R, Liu X-Y (2009) J Am Chem Soc 131(13):4976–4982

    Article  CAS  Google Scholar 

  26. Ge J, Yin Y (2008) Adv Mater 20(18):3485–3491

    Article  CAS  Google Scholar 

  27. Ge J, Hu Y, Zhang T, Huynh T, Yin Y (2008) Langmuir 24(7):3671–3680

    Article  CAS  Google Scholar 

  28. Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y (2007) Angew Chem Int Ed 46(23):4342–4345

    Article  CAS  Google Scholar 

  29. Kuai S-L, Hu X-F, Hache A, Truong V-V (2004) J Cryst Growth 267(1):317–324

    Article  CAS  Google Scholar 

  30. Zhou Z, Zhao X (2004) Langmuir 20(4):1524–1526

    Article  CAS  Google Scholar 

  31. Zhou Z, Zhao X (2005) Langmuir 21(10):4717–4723

    Article  CAS  Google Scholar 

  32. Goodall A, Wilkinson M, Hearn J (1977) J Polym Sci: Polym Chem Edit 15(9):2193–2218

    Article  CAS  Google Scholar 

  33. Reese CE, Asher SA (2002) J Colloid Interf Sci 248(1):41–46

    Article  CAS  Google Scholar 

  34. Hart SJ, Terray AV (2003) Appl Phys Lett 83(25):5316–5318

    Article  CAS  Google Scholar 

  35. Zhang S, Chen J, Taha M (2009) J Appl Polym Sci 114(3):1598–1605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No.51173146, NO.51173147), Key Project of Space Foundation(CASC201106), graduate starting seed fund of Northwestern Polytechnical University (Grant No. z2013162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Fan, X., Zhou, L. et al. Preparation and assembly performance of colloidal particles of photonic crystals with controlled photonic band gaps. J Polym Res 20, 153 (2013). https://doi.org/10.1007/s10965-013-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0153-1

Keywords

Navigation