Skip to main content
Log in

Poly(3,4-ethylenedioxythiophene)/TiO2 nanocomposites prepared in the presence of surfactants in binary solvents

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this research, a new facile and efficient route has been employed to prepare poly(3,4-ethylenedioxythiophene)/titanium dioxide (PEDOT/TiO2) nanocomposites using chloroform-acetonitrile binary solvents. Two homogenized and stabilized chloroform-based nanofluids were separately prepared with titanium dioxide nanoparticles in the presence of two anionic and cationic surfactants, i.e. sodium dodecylbenzene sulfonate (SDBS) and tetradecyltrime-thylammonium bromide (TTAB) by sonication. Next, 3,4-ethylenedioxythiophene (EDOT) monomer was added to these nanofluids. A solution of iron (III) chloride oxidant in acetonitrile was then slowly poured into the previous mixture. The chemical oxidative polymerizations resulted in the preparation of PEDOT/TiO2 in a medium of the two mentioned miscible organic solvents. To compare the results obtained, pure PEDOT as a reference was also prepared by a similar manner to that of used to prepare PEDOT/TiO2 nanocomposites. UV–vis diffuse reflectance spectra (DRS) were utilized to investigate the effect of the incorporated nano-TiO2 particles on optical properties of PEDOT. X-ray diffraction (XRD) patterns obviously showed the characteristic peaks of embedded TiO2 nanoparticles on the diffractogram of the resulting PEDOT. Surface morphology of the nanocomposites was evaluated by scanning electron microscopy (SEM) analyses. Transmission electron microscopy (TEM) images demonstrated that the TiO2 nanoparticles were uniformly dispersed in both PEDOT bulks. Thermogravimetric analysis (TGA/DTG) clearly showed that both PEDOT/TiO2 nanocomposites are more stable toward heat compared with the pure PEDOT sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cho MS, Seo HJ, Nam JD, Choi HR, Koo JC, Song KG, Lee Y (2006) Sens Actuators B Chem 119:621–624

    Article  CAS  Google Scholar 

  2. Cho MS, Seo HJ, Nam JD, Lee Y, Son YK (2007) Mol Cryst Liq Cryst 464:51–56

    Google Scholar 

  3. Wang J, Xu Y, Sun X, Li X, Du X (2008) J Solid State Electrochem 12:947–952

    Article  CAS  Google Scholar 

  4. Cho SH, Joo JS, Jung BR, Ha TM, Lee JY (2009) Macromol Res 17:746–749

    Article  CAS  Google Scholar 

  5. Hulvat JF, Stupp SI (2004) Adv Mater 16:589–592

    Article  CAS  Google Scholar 

  6. Li J, Liu JC, Gao CJ (2010) J Polym Res 17:713–718

    Article  Google Scholar 

  7. Coskun Y, Cirpan A, Toppare L (2007) J Mater Sci 42:368–372

    Article  CAS  Google Scholar 

  8. Liao JY, Ho KC (2005) Sol Energy Mater Sol Cells 86:229–241

    Article  CAS  Google Scholar 

  9. Balamurugan A, Chen SM (2009) Electroanal 21:1419–1423

    Article  CAS  Google Scholar 

  10. Ocampo C, Oliver R, Armelin E, Aleman C, Estrany F (2006) J Polym Res 13:193–200

    Article  CAS  Google Scholar 

  11. Osaka I, Okumura K, Miyake N, Watanabe T, Nozaki K, Kawasaki H, Arakawa R (2010) J Mass Spectrom Soc Jpn 58:123–127

    Article  CAS  Google Scholar 

  12. Toma FL, Bertand G, Klein D, Meunier C, Begin S (2008) J Nanomater 1–8

  13. Docquier N, Candel S (2002) Prog Energy Combust Sci 28:107–150

    Article  CAS  Google Scholar 

  14. Mallakpour S, Barati A (2012) J Polym Res 19. doi 10.1007/s10965-011-9802-4

  15. Hashimoto K, Irie H, Fujishima A (2005) J Appl Phys 44:8269–8285

    CAS  Google Scholar 

  16. Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Chem Rev 111:5345–5404

    Article  CAS  Google Scholar 

  17. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang L, Aksay IA, Liu J (2009) ACS Nano 3:907–914

    Article  CAS  Google Scholar 

  18. Nanu M, Schoonman J, Goossens A (2005) Adv Funct Mater 15:95–100

    Article  CAS  Google Scholar 

  19. Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W (2009) Thin Solid Films 517:2775–2880

    Article  CAS  Google Scholar 

  20. Yu DG, Kim SH, An JH (2007) J Ind Eng Chem 13:438–443

    CAS  Google Scholar 

  21. Yang Y, Wang P (2006) Polymer 47:2683–2688

    Article  CAS  Google Scholar 

  22. Hu A, Zhang X, Oakes KD, Peng P, Zhou YN, Servos MR (2011) J Hazard Mater 189:278–285

    Article  CAS  Google Scholar 

  23. Chen CY (2009) Water Air Soil Pollut 202:335–342

    Article  CAS  Google Scholar 

  24. Koduri R, Rodrigo J, Orellana A (2008) J Mater Sci Mater Electron 19:373–378

    Article  CAS  Google Scholar 

  25. Vieira FTG, Melo DS, Lima SJG, Longo E, Paskocimas CA, Junior WS, Souza AG, Santos IMG (2009) Mater Res Bull 44:1086–1092

    Article  CAS  Google Scholar 

  26. Lee LH, Chen WC (2001) Chem Mater 13:1137–1142

    Article  CAS  Google Scholar 

  27. Bhattacharyya S, Das SK, Mitra NK (2005) Bull Mater Sci 28:445–452

    Article  CAS  Google Scholar 

  28. Pavasupree S, Suzuki Y, Pivsa SA, Yoshikawa S (2005) Sci Technol Adv Materials 6:224–229

    Article  CAS  Google Scholar 

  29. Zhao JH, Procedia JH (2012) Environ Sci 12:445–450

    CAS  Google Scholar 

  30. Pekakis PA, Xekoukoulotakis NP, Mantzavinos D (2006) Water Res 40:1276–1286

    Article  CAS  Google Scholar 

  31. Su B, Zhang X, Ma Z, Fei P, Sun J, Lei Z (2010) Bull Mater Sci 33:741–745

    Article  CAS  Google Scholar 

  32. Jean SS, Yang SJ, Lee KJ, Im SS (2010) Polymer 51:4069–4076

    Article  Google Scholar 

  33. Janaky C, Bencsik G, Racz A, Visy C, Tacconi NR, Chanmanee W, Rajeshwar K (2010) Langmuir 26:13697–13702

    Article  CAS  Google Scholar 

  34. Shin HJ, Jeon SS, Im SS (2011) Synth Met 161:1284–1288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Research Council of Damghan University for financial support of this research (ID number: 90/Chem/99/175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Behniafar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behniafar, H., Moaref, H. Poly(3,4-ethylenedioxythiophene)/TiO2 nanocomposites prepared in the presence of surfactants in binary solvents. J Polym Res 20, 132 (2013). https://doi.org/10.1007/s10965-013-0132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0132-6

Keywords

Navigation