Skip to main content
Log in

On the mechanism of conductivity enhancement in PEDOT/PSS film doped with multi-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The results of conductivity investigation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) thin films doped with different multi-walled carbon nanotubes (MWCNTs) concentrations were studied. The role of MWCNTs as a conductive filler on the mechanism of conductivity enhancement in the composite film was further investigated by X-ray diffraction (XRD), Fourier transform Roman spectroscopy (FT-RM), X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM). The increase of the conductivity is likely to be due to two effects, the “π-π interaction” effect and the “channel” effect. The former is π-π interaction between the thiophene rings of PEDOT backbone and MWCNTs, and the electronic density transfer occurs from PEDOT to MWCNTs in M-PEDOT/PSS, so that the charge becomes more delocalized on the PEDOT chains. The latter stems from the formation of some conductive MWCNTs channels in the PEDOT/PSS matrix. These two effects can help charge transport and enhance the conductivity of composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heywang G, Jonas F (1992) Adv Mater 4:116–118

    Article  CAS  Google Scholar 

  2. Groenendaal L, Jonas F, Freitag D et al (2000) Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  3. Zhou YF, Yuan YB, Cao LF et al (2007) J Lumin 122–123:602–604

    Article  Google Scholar 

  4. Tsai TC, Hung WY, Chi LC et al (2009) Org Electron 10:158–162

    Article  CAS  Google Scholar 

  5. Vacca P, Petrosino M, Miscioscia R et al (2008) Thin Solid Films 516:4232–4237

    Article  CAS  Google Scholar 

  6. Ko CJ, Lin YK, Chen FC et al (2007) Appl Phys Lett 90:3509–3511

    Google Scholar 

  7. Boucle J, Chyla S, Shaffer MSP et al (2008) Adv Funct Mater 18:622–633

    Article  CAS  Google Scholar 

  8. Steirer KX, Reese MO, Rupert BL et al (2009) Sol Energy Mater Sol Cells 93:447–453

    Article  CAS  Google Scholar 

  9. Jönsson SKM, Birgerson J, Crispin X et al (2003) Synth met 139:1–10

    Article  Google Scholar 

  10. Kim JY, Jung JH, Lee DE et al (2002) Synth Met 126:311–316

    Article  CAS  Google Scholar 

  11. Oey CC, Djurixic AB, Kwong CY et al (2005) Thin Solid Films 492:253–258

    Article  CAS  Google Scholar 

  12. Huang J, Miller PF, Wilson JS et al (2005) Adv Funct Mater 15:290–296

    Article  CAS  Google Scholar 

  13. Ghosh S, Inganas O (2000) Solid State Lett 3:213–215

    Article  CAS  Google Scholar 

  14. Ouyang J, Xu Q, Chu CW et al (2004) Polymer 45:8443–8450

    Article  CAS  Google Scholar 

  15. Ouyang J, Chu CW, Chen FC et al (2004) J Macromol Sci Pure Appl Chem 41:1497–1511

    Article  Google Scholar 

  16. Peng H, Sun X (2009) Chem Phys Lett 471:103–105

    Article  CAS  Google Scholar 

  17. Yang Z, Pu H, Yuan J et al (2008) Chem Phys Lett 465:73–77

    Article  CAS  Google Scholar 

  18. Wu MC, Lin YY, Chen S et al (2009) Chem Phys Lett 468:64–68

    Article  CAS  Google Scholar 

  19. Reddy KR, Sin BC, Ryu KS et al (2009) Synth Met 159:595–603

    Article  CAS  Google Scholar 

  20. Wu TM, Chang HL, Lin YW (2009) Compos Sci Technol 69:639–644

    Article  CAS  Google Scholar 

  21. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  22. Ham HT, Choi YS, Chee MG et al (2008) Polym Eng Sci 48:1–10

    Article  CAS  Google Scholar 

  23. Moon JS, Park JH, Lee TY et al (2005) Diamond Relat Mater 14:1882–1887

    Article  CAS  Google Scholar 

  24. Wang GF, Tao XM, Wang RX (2008) Compos Sci Technol 68:2837–2841

    Article  CAS  Google Scholar 

  25. Hatton RA, Blanchard NP, Tan LW et al (2009) Org Electron 10:388–395

    Article  CAS  Google Scholar 

  26. Saini P, Choudhary V, Singh BP et al (2009) Mater Chem Phys 113:919–926

    Article  CAS  Google Scholar 

  27. Maser WK, Benito AM, Callejas MA et al (2003) Mater Sci Eng C 23:87–91

    Article  Google Scholar 

  28. Wang HM, Jin SS, Tang GQ et al (2007) Acta Chimica Sinica 65:2923–2928

    CAS  Google Scholar 

  29. Ghosh S, Inganäs O (1999) Synth Met 101:411–416

    Article  Google Scholar 

  30. Jonas F, Heywang G (1994) Electrochim Acta 39:1345–1347

    Article  CAS  Google Scholar 

  31. Yang Y, Jiang Y, Xu J et al (2007) Colloids and Surfaces A: Physicochem Eng Aspects 302:157–161

    Article  CAS  Google Scholar 

  32. Łapkowski M, Pron’ A (2000) Synth Met 110:79–83

    Article  Google Scholar 

  33. Wang BH, Deng YH, Ge J et al (2005) Funct Mater 26:1610–1612

    Google Scholar 

  34. Garreau S, Louarn G, Buisson JP et al (1999) Macromolecules 32:6807–6812

    Article  CAS  Google Scholar 

  35. Rao AM, Eklund PC, Bandow S et al (1997) Nature 388:257–259

    Article  CAS  Google Scholar 

  36. Tang GQ, Wang HM, Jin SS et al (2008) Acta Chimica Sinica 66:675–679

    CAS  Google Scholar 

  37. Greczynski G, Kugler T, Keil M et al (2001) J Electron Spectrosc Relat Phenom 121:1–17

    Article  CAS  Google Scholar 

  38. Crispin X, Marciniak S, Osikowicz W et al (2003) J Polym Sci Part B: Polym Phys 41:2561–2583

    Article  CAS  Google Scholar 

  39. Yang ZL, Chen HZ, Cao L et al (2004) Mater Sci Eng B 106:73–78

    Article  Google Scholar 

  40. Kumar S, Dang TD, Arnold FE et al (2002) Macromolecules 35:9039–9043

    Article  CAS  Google Scholar 

  41. Zhang J, Mine M, Zhu D et al (2009) Carbon 47:1311–1320

    Article  CAS  Google Scholar 

  42. Ra EJ, An KH, Kim KK et al (2005) Chem Phys Lett 413:188–193

    Article  CAS  Google Scholar 

  43. Kota AK, Cipriano BH, Duesterberg MK et al (2007) Macromolecules 40:7400–7406

    Article  CAS  Google Scholar 

  44. Pedroni LG, Soto-Oviedo MA, Rosolen JM et al (2009) J Appl Polym Sci 112:3241–3248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the program for New Century Excellent Talents in University (NCET, Grant No. NCET-04-0648) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Cheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Liu, JC. & Gao, CJ. On the mechanism of conductivity enhancement in PEDOT/PSS film doped with multi-walled carbon nanotubes. J Polym Res 17, 713–718 (2010). https://doi.org/10.1007/s10965-009-9360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9360-1

Keywords

Navigation