Skip to main content
Log in

Reinforcing performance of recycled PET microfibrils in comparison with liquid crystalline polymer for polypropylene based composite fibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Recycled polyethylene terephthalate (rPET) used as an alternative reinforcing additive for polypropylene (PP) based composite fibers, compared with liquid crystalline polymer (LCP), was investigated. Both PP-LCP and PP-rPET composites were prepared as fiber using hot drawing process. The effects of draw ratios and compatibilizer dosages on morphology in relation to tensile properties of both types of the composite systems were studied. The variation of draw ratios resulted in much change of stress–strain behavior in compatibilized rPET composite system owing to the obvious difference in morphological change of rPET dispersed phase upon drawing. Tensile strength and extensibility of both composites system were significantly improved with compatibilizer loading. The tensile strength of compatibilized rPET-composite fibers was higher than that of the compatibilized LCP system. The obtained results demonstrated the high potential of rPET as a well-defined reinforcing material for PP based composite fiber under the improved interfacial adhesion promoted by compatibilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kiss G (1987) In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci 27:410–423

    Article  CAS  Google Scholar 

  2. Acierno D, Collyer AA (1996) Rheology and processing of liquid crystal polymers. 1st ed. Polymer liquid crystal series, Vol.2. Chapman & Hall, London

    Google Scholar 

  3. Isayev AI, Modic M (1987) Self-reinforced melt processible polymer composites: extrusion, compression, and injection molding. Polym Compos 8(3):158–175

    Article  CAS  Google Scholar 

  4. Mehta A, Isayev AI (1991) The dynamic properties, temperature transition, and thermal stability of poly(ether ether ketone)-thermotropic liquid crystalline polymer blends. Polym Eng Sci 31(13):963–970

    Article  CAS  Google Scholar 

  5. Tjong S (2003) Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymer and thermoplastics. Mater Sci Eng R41:1–60

    CAS  Google Scholar 

  6. Saikrasun S, Limpisawasdi P, Amornsakchai T (2009) Comparative study on phase and properties between rPET/PS and LCP/PS in situ microfibrillar-reinforced composites. J Polym Res 16:443–454

    Article  CAS  Google Scholar 

  7. Saikrasun S, Limpisawasdi P, Amornsakchai T (2009) Effect of LCP and rPET as Reinforcing Materials on Rheology, Morphology, and Thermal Properties of in situ Microfibrillar-Reinforced Elastomer Composites. J Appl Polym Sci 112:1897–1908

    Article  CAS  Google Scholar 

  8. Kalfoglou NK, Skafidas DS, Sotiropoulou DD (1994) Compatibilization of blends of poly(ethylene terephthalate) and linear low density polyethylene with the ionomer of poly(ethyleneco-methacrylic acid). Polymer 35:3624–3630

    Article  CAS  Google Scholar 

  9. Aglietto M, Coltelli MB, Savi S, Lochiatto F, Ciardelli F, Giani M (2004) Postconsumer polyethylene terephthalate (PET)/polyolefin blends through reactive processing. J Mater Cycles Waste Manag 6:13–19

    Article  CAS  Google Scholar 

  10. Friedrich K, Evstatiev M, Farikov S, Evstatiev O, Ishii M, Harrass M (2005) Microfibrillar reinforced composites from PET/PP blends: processing, morphology and mechanical properties. Compos Sci Technol 65:107–116

    Article  CAS  Google Scholar 

  11. Taepaiboon P, Junkasem J, Dungtungee R, Amornsakchai T, Supaphol P (2006) In situ microfibrillar reinforced composites of isotactic polypropylene/recycled poly(ethylene terephthalate) system and effect of compatibilizer. J Appl Polym Sci 102:1173–1181

    Article  CAS  Google Scholar 

  12. Fuchs C, Bhattacharyya D, Fakirov S (2006) Microfibrillar reinforced polymer-polymer composites: application of Tsai-Hill equation to PP/PET composites. Compos Sci Technol 66:3161–3171

    Article  CAS  Google Scholar 

  13. Santos P, Pezzin SH (2003) Mechanical properties of polypropylene reinforced with recycled-PET fibers. J Mater Process Technol 143–144:517–520

    Article  Google Scholar 

  14. Evstatiev M, Fakirov S, Krasteva B, Friedrich K, Covas JA, Cunha AM (2002) Recycling of poly(ethylene terephthalate) as polymer-polymer composites. Polym Eng Sci 42:826–835

    Article  CAS  Google Scholar 

  15. Pawlak A, Morawiec J, Pazzagli F, Pracella M, Galeski A (2002) Recycling of postconsumer poly(ethylene terephthalate) and high density polyethylene by compatibilized blending. J Appl Polym Sci 86:1473–1485

    Article  CAS  Google Scholar 

  16. Avila AF, Duarte MV (2003) A mechanical analysis on recycled PET/HDPE composites. Polym Degrad Stab 80:373–382

    Article  CAS  Google Scholar 

  17. Zhang H, Guo W, Yu Y, Li B, Wu C (2007) Structure and properties of compatibilized recycled poly(ethylene terephthalate)/linear low density polyethylene blends. Euro Polym J 43:3662–3670

    Article  CAS  Google Scholar 

  18. Evstatiev M, Fakirov S (1992) Microfibrillar reinforcement of polymer blends. Polymer 33:877–880

    Article  CAS  Google Scholar 

  19. Bataille P, Boisse S, Schreiber HP (1987) Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures. Polym Eng Sci 27(9):622–626

    Article  CAS  Google Scholar 

  20. Jayanarayanan K, Thomas S, Joseph K (2011) In situ microfibrillar blends and composites of polypropylene and poly (ethylene terephthalate): Morphology and thermal properties. J Polym Res 18:1–11

    Article  CAS  Google Scholar 

  21. Xanthos M, Young MW, Biesenberger JA (1990) Polypropylene/polyethylene terephthalate blends compatibilized through functionalization. Polym Eng Sci 30(6):355–365

    Article  CAS  Google Scholar 

  22. Chiu H-S, Hsiao Y-K (2006) Compatibilization of poly(ethylene terephthalate)/polypropylene blends with maleic anhydride grafted polyethylene-octence elastomer. J Polym Res 13:153–160

    Article  CAS  Google Scholar 

  23. Heino M, Kirijava J, Heitoaja P, Seppala J (1997) Compatibilization of polyethylene terephthalate/polypropylene blends with styrene-ethylene/butylene-styrene (SEBS) block copolymers. J Appl Polym Sci 65:241–249

    Article  CAS  Google Scholar 

  24. Sombatdee S, Saikrasun S, Amornsakchai T (2009) Phase behavior and thermal characteristics of polypropylene in situ microfibrillar-reinforced with liquid crystalline polymer and recycled PET. J Reinf Plast Compos 18(24):2983–2998

    Article  Google Scholar 

  25. Lei Y, Wu Q, Zhang Q (2009) Morphology and properties of microfibrillar composites based on recycled poly(ethylene terephthalate) and high density polyethylene. Composites A 40:904–912

    Article  Google Scholar 

  26. Incarnato L, Scarfato P, Maio LD, Acierno D (2004) Structure and rheology of recycled PET modified by reactive extrusion. Polymer 41:6825–6831

    Article  Google Scholar 

  27. Carté TL, Mont A (1993) Morphological origin of super toughness in poly(ethylene terephthalate)/polyethylene blends. J Appl Polym Sci 48:611–624

    Article  Google Scholar 

  28. Penco M, Pastorino MA, Dechiello E, Garbassi F, Braglia R, Giannotta G (1995) High-impact poly(ethylene terephthalate) blends. J Appl Polym Sci 57:329–334

    Article  CAS  Google Scholar 

  29. Pang YX, Jia DM, Hu HJ, Hourston DJ, Song M (2000) Effects of a compatibilizing agent on the morphology, interface and mechanical behaviour of polypropylene/poly(ethylene terephthalate) blends. Polymer 41:357–365

    Article  CAS  Google Scholar 

  30. Lapers J-C, Favis BD, Tabar RJ (1997) The relative role of coalescence and interfacial tension in controlling dispersed phase size reduction during the compatibilization of polyethylene terephthalate/polypropylene blends. J Polym Sci Polym Phys 35:2271–2280

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission (OHEC), Ministry of Education, is gratefully acknowledged. We also would like to acknowledge Faculty of Science, Mahasarakham University and office of the National Research Council of Thailand (NRCT) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taweechai Amornsakchai or Sunan Saikrasun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sombatdee, S., Amornsakchai, T. & Saikrasun, S. Reinforcing performance of recycled PET microfibrils in comparison with liquid crystalline polymer for polypropylene based composite fibers. J Polym Res 19, 9843 (2012). https://doi.org/10.1007/s10965-012-9843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9843-3

Keywords

Navigation