Skip to main content
Log in

In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene-vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of two dimensional graphene nanosheets (2D GNSs) and one dimensional carbon nanotubes (1D CNTs) on the isothermal crystallization of an ethylene–vinyl acetate (EVA) copolymer at a high loading (5 wt.%) was studied by in-situ synchrotron wide-angle X-ray diffraction. The morphology observations indicated a homogeneous dispersion of GNSs and CNTs in EVA which formed a constrained environment (3D network or 2D layered structure) for ethylene–vinyl acetate EVA crystallization, respectively. The results of wide-angle X-ray diffraction showed a high weight fraction of nano-fillers slowed the crystallization rate of composites. The crystallization behavior of EVA was confined by 2D planar GNSs more seriously than 1D tubular CNTs owing to a more completed and closed layered GNS network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) J Phys Chem B 106:5852

    Article  CAS  Google Scholar 

  2. Li SN, Li ZM, Yang MB, Hu ZQ, Xu XB, Huang R (2004) Mater Lett 58:3967

    Article  CAS  Google Scholar 

  3. Xu JZ, Chen C, Wang Y, Tang H, Li ZM, Hsiao BS (2011) Macromolecules 44:2808

    Article  CAS  Google Scholar 

  4. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Li ZM (2010) Macromolecules 43:5000

    Article  CAS  Google Scholar 

  5. Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61:1899

    Article  CAS  Google Scholar 

  6. Avella M, Cosco S, Volpe GD, Errico ME (2005) Adv Polym Technol 24:132

    Article  CAS  Google Scholar 

  7. Hutley TJ, Darlington MW (1984) Polymer Comm 25:226

    CAS  Google Scholar 

  8. Hutley TJ, Darlington MW (1985) Polymer Comm 26:264

    CAS  Google Scholar 

  9. Rohde E, Bayer AG (1993) Rubber World 208:36

    CAS  Google Scholar 

  10. Hummers W, Offeman R (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  11. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457

    Article  CAS  Google Scholar 

  12. Magniez K, Fox BL, Looney MG (2009) J Polymer Sci B 47:1300

    Article  CAS  Google Scholar 

  13. Ma WZ, Wang XL, Zhang J (2010) J Polymer Sci B 48:2154

    Article  CAS  Google Scholar 

  14. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) Thermochim Acta 511:129

    Article  CAS  Google Scholar 

  15. Gam S, Meth JS, Zane SG, Chi CZ, Wood BA, Seitz ME, Winey KI, Clarke N, Composto RJ (2011) Macromolecules 44:3494

    Article  CAS  Google Scholar 

  16. Wang H, Keum JK, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A (2009) Science 323:757

    Article  CAS  Google Scholar 

  17. Schönherr H, Frank CW (2003) Macromolecules 36:1199

    Article  Google Scholar 

  18. Schönherr H, Frank CW (2003) Macromolecules 36:1188

    Article  Google Scholar 

  19. Wang Y, Ge S, Rafailovich M, Sokolov J, Zou Y, Ade H, Lüning J, Lustiger A, Maron G (2004) Macromolecules 37:3319

    Article  CAS  Google Scholar 

  20. Ma Y, Hu WB, Reiter G (2006) Macromolecules 39:159

    Article  Google Scholar 

  21. Ma Y, Hu WB, Hobbs J, Reiter G (2008) Soft Matter 4:540

    Article  CAS  Google Scholar 

  22. Massa MV, Dalnoki-Veress K, Forrest JA (2003) Eur Phys J 11:191

    CAS  Google Scholar 

  23. Frank CW, Rao V, Despotopoulou MM, Pease RFW, Hinsber WD, Miller RD, Rabolt F (1996) Science 273:912

    Article  CAS  Google Scholar 

  24. Hu ZJ, Zhang FJ, Du BY, Huang HY, He TB (2004) Langmuir 20:3271

    Article  CAS  Google Scholar 

  25. Durmus A, Yalcmyuva (2009) J Polym Res 16:489

    Article  CAS  Google Scholar 

  26. Adhikari A, Lozano K (2011) J Polym Res 18:875.27

    Article  Google Scholar 

  27. Ou CF, Ho MT, Lin JR (2003) J Polym Res 10:127

    Article  CAS  Google Scholar 

  28. Hu X, Xu JZ, Zhong GJ, Luo XL, Li ZM (2011) J Polym Res 18:675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by National Science Fund of China (Contract No. 51121001, 50925311 and 20976112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, H., Zhong, GJ., Wang, Y. et al. In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene-vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets. J Polym Res 19, 9837 (2012). https://doi.org/10.1007/s10965-012-9837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9837-1

Keywords

Navigation