Skip to main content
Log in

Isothermal crystallization of syndiotactic polystyrene induced by graphene nanosheets and carbon nanotubes: a comparative study

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composites of sPS filled with different contents of graphene nanosheets (GNS) are prepared by coagulation method. Two types of GNS with different thicknesses (denoted as G1 and G10) are studied to unveil the effect of aspect ratio on the crystallization kinetics of the composite. Atomic force microscopy and transmission electron microscopy (TEM) show that G1 is a wrinkled sheet with an average thickness of ~2 nm and that G10 is a smooth flake with a thickness of ~50 nm; both possess a basal dimension of ~5 μm. TEM studies on the melt-quenched composites reveal that G1 has a more uniform dispersion in the sPS matrix than G10. Short lamellae of sPS are observed in the G10-filled composites with GNS content higher than 0.5 wt.%. The results of wide-angle X-ray diffraction show that the produced sPS crystallites are in β form under severe cooling conditions in liquid N2. Regardless of the GNS content and type, the glass transition and equilibrium melting temperature of the sPS matrix are unchanged at ~96 and ~290 °C, respectively. Both G1 and G10 nanofillers are good nucleating agents for the heterogeneous nucleation of sPS. With increasing GNS loading, the isothermal crystallization rate of sPS increases. G10 is more effective than G1 in inducing sPS crystallization despite the higher concentration required to form the GNS network. Compared with 1D CNT nanofiller, 2D GNS is less effective in enhancing sPS crystallization through surface-induced nucleation because of the geometrical difference between the two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  Google Scholar 

  2. Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515

    Article  CAS  Google Scholar 

  3. Cai D, Song M (2010) J Mater Chem 20:7906

    Article  CAS  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132

    Article  CAS  Google Scholar 

  5. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  6. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5

    Article  CAS  Google Scholar 

  7. Gowd EB, Tashiro K, Ramesh C (2009) Prog Polym Sci 34:280

    Article  CAS  Google Scholar 

  8. Woo EM, Sun YS, Yang CP (2001) Prog Polym Sci 26:945

    Article  CAS  Google Scholar 

  9. Ramasubramaniam R, Chen J (2003) Appl Phys Lett 83:2928

    Article  CAS  Google Scholar 

  10. Lu K, Grossiord N, Koning CE, Miltner HE, van Mele B, Loos J (2008) Macromolecules 41:8081

    Article  CAS  Google Scholar 

  11. Haggenmueller R, Fischer JE, Winey KI (2006) Macromolecules 39:2964

    Article  CAS  Google Scholar 

  12. Cheng S, Chen X, Hsuan G, Li Y (2012) Macromolecules 45:993

    Article  CAS  Google Scholar 

  13. Xu JZ, Chen C, Wang Y, Tang H, Li ZM, Hsiao BS (2011) Macromolecules 44:2808

    Article  CAS  Google Scholar 

  14. Achaby ME, Arrakhiz FE, Vaudreuil S, Qaiss AEK, Bousmina M, Fassi-Fehri O (2012) Polym Comps 33:733

    Article  Google Scholar 

  15. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Macromolecules 43:5000

    Article  CAS  Google Scholar 

  16. Huang CL, Wang C (2011) Eur Polym J 47:2087

    Article  CAS  Google Scholar 

  17. Wang C, Huang CL, Chen YC, Hwang GL, Tsai SJ (2008) Polymer 49:5564

    Article  CAS  Google Scholar 

  18. Grossiord N, Miltner HE, Loos J, Meuldijk J, Mele BV, Koning CE (2007) Chem Mater 19:3787

    Article  CAS  Google Scholar 

  19. Grady BP (2010) Macromol Rapid Commun 31:247

    Article  CAS  Google Scholar 

  20. Although electron microscopy may provide local information on the composites, electrical conductivity data, coupled with percolation laws, are regarded as more appropriate for describing the global dispersion of GNS in solid state. A percolation threshold, used to characterize the dispersion state of filler, is applied by measuring the electrical conductivity of GNS-filled sPS composites with a filler content of 0.05 ~ 10 wt%. Based on percolation scaling law, the electrical conductivity thresholds of the G1-filled and G10-filled composites are determined to be 0.46 and 3.84 vol%, respectively.

  21. Sorrentino A, Vertuccio L, Vittoria V (2010) eXPRESS Polym Lett 4:339

    Article  CAS  Google Scholar 

  22. Wu TM, Hsu SF, Chien CF, Wu JY (2004) Polym Sci Eng 44:2288

    Article  CAS  Google Scholar 

  23. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S (1999) Macromolecules 32:6221

    Article  CAS  Google Scholar 

  24. Wang C, Huang CL, Cheng YW, Chen YC, Shong J (2007) Polymer 48:7393

    Article  CAS  Google Scholar 

  25. Quan H, Li ZM, Yang MB, Huang R (2005) Compos Sci Technol 65:999

    Article  CAS  Google Scholar 

  26. Yang M, Koutsos V, Zaiser M (2005) J Phys Chem B 109:10009

    Article  CAS  Google Scholar 

  27. Hata T, Ohsaka K, Yanada T, Nakamae K, Shibata N, Matsumoto T (1994) J Adhesion 45:125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Science Council of Taiwan (ROC) for the research grant (NSC-101-2221-E-006-069-MY2) that supported this work. This research was, in part, supported by the Ministry of Education, Taiwan, R.O.C. The Aim for the Top University Project to the National Cheng Kung University (NCKU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chiu, YC. Isothermal crystallization of syndiotactic polystyrene induced by graphene nanosheets and carbon nanotubes: a comparative study. J Polym Res 22, 76 (2015). https://doi.org/10.1007/s10965-015-0723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0723-5

Keywords

Navigation