Skip to main content
Log in

Nanocomposite polymer electrolytes membranes based on Poly(vinylphosphonic acid)/SiO2

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Proton conducting polymer electrolytes bearing phosphonic acid units are very promising due to their high conductivity, thermal and chemical stability. In the present work, proton conducting nanocomposite electrolytes containing poly(vinylphosphonic acid) (PVPA) and SiO2 were prepared by two different methods. The interaction existed between PVPA and SiO2 was confirmed by FT-IR spectroscopy. The surface roughness of the nanocomposites was studied using AFM. Thermogravimetric analysis revealed that the samples were thermally stable up to 200 °C. The glass transition temperature (Tg) of the materials were determined using DSC. In the anhydrous state, the proton conductivity of PVPA(10)SiO2 (in situ) was found to be 0,009 (Scm−1) at 120 °C. The proton conductivity of PVPA(10)SiO2 increased to 0.08 (Scm−1) at 50 % relative humidity. The SiO2 nanoparticles in the composite membranes improved the thermal properties and increased the proton conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acar O, Sen U, Bozkurt A, Ata A (2009) Proton conducting membranes based on Poly(2,5-benzimidazole) (ABPBI)–Poly(vinylphosphonic acid) blends for fuel cells. Int J Hydrogen Energy 34:2724–2730

    Article  CAS  Google Scholar 

  2. Bozkurt A, Meyer WH, Gutmann J, Wegner G (2003) Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ionics 164:169–176

    Article  CAS  Google Scholar 

  3. Bruce PG (ed) (1995) Solid state electrochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  4. Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry Monographs, Cambridge

    Google Scholar 

  5. Hagihara H, Uchida H, Watanabe M (2006) Preparation of highly dispersed SiO2 and Pt particles in Nafion®112 for self-humidifying electrolyte membranes in fuel cells. Electrochim Acta 51:3979–3985

    Article  CAS  Google Scholar 

  6. Bao C, Ouyang MG, Yi BL (2006) Analysis of the water and thermal management in proton exchange membrane fuel cell systems. Int J Hydrogen Energy 31:1040–1057

    Article  CAS  Google Scholar 

  7. Savadogo O (2004) Emerging membranes for electrochemical systems: part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161

    Article  CAS  Google Scholar 

  8. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    Article  CAS  Google Scholar 

  9. Souzy R, Ameduri B (2005) Functional fluoropolymers for fuel cell membranes rog. Polym Sci 30:644–687

    CAS  Google Scholar 

  10. Sevil F, Bozkut A (2004) Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. J Phys Chem Solids 65:1659–1662

    Article  CAS  Google Scholar 

  11. Yang H, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Memb Sci 237:145–161

    Article  CAS  Google Scholar 

  12. Weston JK, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79

    Article  CAS  Google Scholar 

  13. Moskwiak M, Giska I, Borkowska R, Zalewska A, Marczewski M, Marczewska H, Wieczorek W (2006) Physico- and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2. Power Sources 159:443–446

    Article  CAS  Google Scholar 

  14. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batterie. Nature 394:456–458

    Article  CAS  Google Scholar 

  15. Kumar B (2007) In: Khare N, Hashmi SA, Chandra A, Chandra A (eds) Electroactive polymers: materials and devices, vol I. Allied publishers, New Delhi, p 53

    Google Scholar 

  16. Macarie L, Ilia G (2010) Poly(vinylphosphonic acid) and its derivatives. Prog Polym Sci 35:1078–1092

    Article  CAS  Google Scholar 

  17. Pandey GP, Hashmi SA, Agrawal RC (2008) Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics 179:543–549

    Article  CAS  Google Scholar 

  18. Pu H, Pan H, Qin Y, Wan D, Yuanu J (2010) Phosphonic acid-functionalized hollow silica spheres by nitroxide mediated polymerization. Mater Lett 64:1510–1512

    Article  CAS  Google Scholar 

  19. Aslan A, Bozkurt A (2009) Development and characterization of polymer electrolyte membranes based on ionical cross-linked poly(1-vinyl-1,2,4 triazole) and poly(vinylphosphonic acid). J Power Sources 191:442–447

    Article  CAS  Google Scholar 

  20. Aslan A, Bozkurt A (2011) Proton conducting properties of ionically cross-linked poly(1-vinyl-1,2,4 triazole) and poly(2-acrylamido- 2-methyl-1-propanesulfonic acid) electrolytes. Polym Bull 66:1099–1111

    Article  CAS  Google Scholar 

  21. Çelik SU, Akbey U, Graf R, Bozkurt A, Spiess HW (2008) Anhydrous proton-conducting properties of triazole–phosphonic acidcopolymers: a combined study with MAS NMR. Phys Chem Chem Phys 10:6058–6066

    Article  Google Scholar 

  22. Percy MJ, Barthet C, Lobb JC, Khan MA, Lascelles SF, Vamvakaki M, Armes SP (2000) Synthesis and characterization of Vinyl Polymer-Silica colloidal nanocomposites. Langmuir 16:6913–6920

    Article  CAS  Google Scholar 

  23. Lee YJ, Bingöl B, Murakhtina T, Sebastiani D, Meyer WH, Wegner G, Spiess HW (2007) High resolution solid state NMR studies of Poly(vinyl phosphonic acid) proton conducting polymer: molecular structure and proton dynamics. J Phys Chem B 111:9711–9721

    Article  CAS  Google Scholar 

  24. Sedin DL, Rowlen KL (2001) Influence of tip size on AFM roughness measurements. Appl Surf Sci 182:40–48

    Article  CAS  Google Scholar 

  25. Goktepe F, Çelik SU, Bozkurt A (2008) Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. J Non-Cryst Solids 354:3637

    Article  CAS  Google Scholar 

  26. Ou DL, Seddon AB (1997) Near- and mid-infrared spectroscopy of sol–gel derived ormosils: vinyl and phenyl silicates. J Non-Cryst Solids 210:187–203

    Article  CAS  Google Scholar 

  27. Parler CM, Ritter JA, Amiridis MD (2001) Infrared spectroscopic study of sol–gel derived mixed-metal oxides. J Non-Cryst Solids 279:119–125

    Article  CAS  Google Scholar 

  28. Cho SA, Cho EA, Oh IH, Kim HJ, Ha HY, Hong SA, Ju JB (2006) Surface modified Nafion membrane by ion beam bombardment for fuel cell applications. J Power Sources 155:286–290

    Article  CAS  Google Scholar 

  29. Wagner T, Manhart A, Deniz N, Kaltbeitzel A, Wagner M, Brunklaus G, Meyer WH (2009) Vinylphosphonic acid homo- and block copolymers Macromol. Chem Phys 210:1903–1914

    CAS  Google Scholar 

  30. Chuang S-W, Hsu SL-C, Liu Y-H (2007) J Membr Sci 305:353–363

    Article  CAS  Google Scholar 

  31. Munakata H, Chiba H, Kanamura K (2005) Solid State Ionics 176:2445

    Article  CAS  Google Scholar 

  32. Gasa JV, Boob S, Weiss RA, Shaw MT (2006) J Membr Sci 269:177

    Article  CAS  Google Scholar 

  33. Mehtap SB, Sevim UC, Ayhan B, Ismail B (2011) J Membr Sci 375:157–164

    Article  Google Scholar 

  34. Lin J, Wycisk R, Pintauro PN, Kellner M (2007) Electrochem Solid State Lett 10:B19

    Article  CAS  Google Scholar 

  35. Lin J, Wu P-H, Wycisk R, Trivisonno A, Pintauro PN (2008) J Power Sources 183:491

    Article  CAS  Google Scholar 

  36. Kaltbeitzel A, Schauff S, Steininger H, Bingöl B, Brunklaus G, Meyer WH, Spiess HW (2007) Water sorption of poly(vinylphosphonic acid) and its influence on proton conductivity. Solid State Ionics 178:469

    Article  CAS  Google Scholar 

  37. Takimoto N, Wu L, Ohira A, Takeoka Y, Rikukawa M (2009) Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: relationship between morphology and proton conduction. Polymer 50:534–540

    Article  CAS  Google Scholar 

  38. Casciola M, Alberti G, Sganappa M, Narducci R (2006) On the decay of Nafion proton conductivity at high temperature and relative humidity. J Power Sources 162:141–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fatih University Research Foundation under the contract number P50021005_G and partially supported by TÜBA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, A., Gölcük, K. & Bozkurt, A. Nanocomposite polymer electrolytes membranes based on Poly(vinylphosphonic acid)/SiO2 . J Polym Res 19, 22 (2012). https://doi.org/10.1007/s10965-012-0022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0022-3

Keywords

Navigation