Skip to main content
Log in

Investigation on structure and properties of cobalt(II)/polyesterurethane metallopolymer films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of metallopolymers were prepared from cobalt(II) ions as chloride and a polyesterurethane having different molar ratios metal ions/urethane groups. The microstructure and macroscopic properties of the metallopolymer films (CoPU) were investigated in comparison with those of the parent polymer film (PU) by various techniques: atomic absorption spectrometry (AAS), ultraviolet and visible (UV–vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and tensile testing. Cobalt(II) ions predominantly form tetrahedral coordination complexes with the nitrogen atoms in the hard segments, the intermolecular complexation bringing about coordination crosslinking. Complexation causes the disturbance of the initial interurethane hydrogen bonding and induces changes in the crystallinity of the hard-segment domains. The mechanical and viscoelastic behaviours of CoPU result from an intricate interplay between several phenomena occurring within the polymer matrix (such as complexation, hydrogen bonding and crystallization). For CoPU compared with PU, the initial thermal stability is diminished and the main steps of the thermal decomposition process are favoured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elassar AZA, Al-Fulaij OA, El-Sayed AEM (2010) J Polym Res 17:447–458

    Article  CAS  Google Scholar 

  2. Patel M, Kapadia M, Joshi J (2009) J Polym Res 16:755–765

    Article  CAS  Google Scholar 

  3. Abd-El-Aziz AS, Carraher Jr CE, Pittman Jr CU, Zeldin M (eds) (2003–2010) Macromolecules containing metal and metal-like elements. Vols 1–10. John Wiley & Sons Inc, Hoboken NJ

  4. Barbucci R, Ciardelli F, Ruggeri G (eds) (2006) Recent advances and novel approaches in macromolecule−metal complexes. Macromol Symp 235. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  5. Abd-El-Aziz AS, Manners I (eds) (2007) Frontiers in transition metal-containing polymers. Wiley-Interscience, Hoboken

    Google Scholar 

  6. Pomogailo AD, Kestelman VN (2005) Metallopolymer nanocomposites. Springer, Berlin

    Google Scholar 

  7. Wang B, Guan X, Hu Y, Su Z (2008) J Polym Res 15:427–433

    Article  CAS  Google Scholar 

  8. Cheng R, Ou S, Xiang B, Li Y, Liao Q (2009) J Polym Res 16:703–708

    Article  CAS  Google Scholar 

  9. Karppi J, Åkerman S, Åkerman K, Sundell A, Penttilä I (2010) J Polym Res 17:71–76

    Article  CAS  Google Scholar 

  10. Chowdhury P, Mukherjee A, Singha B, Mondal P, Roy K (2010) J Polym Res 17:853–860

    Article  CAS  Google Scholar 

  11. Wang BY, Liu XY, Ding SL, Su ZX (2011) J Polym Res 18:1315–1322

    Article  CAS  Google Scholar 

  12. Saad GR, Khalil TM, Sabaa MW (2010) J Polym Res 17:33–42

    Article  CAS  Google Scholar 

  13. Sardon H, Irusta L, Santamaría P, Fernández-Berridi MJ (2012) J Polym Res 19:9956

    Article  Google Scholar 

  14. O’Connell EM, Yang CZ, Root TW, Cooper SL (1996) Macromolecules 29:6002–6010

    Article  Google Scholar 

  15. Hong L, Cui Y, Wang X, Tang X (2003) J Polym Sci Part B: Polym Phys 41:120–126

    Article  CAS  Google Scholar 

  16. Moroi GN (2010) Polym Degrad Stab 95:289–297

    Article  CAS  Google Scholar 

  17. Moroi G (2008) React Funct Polym 68:268–283

    Article  CAS  Google Scholar 

  18. Moroi G, Bilba D, Bilba N, Ciobanu C (2006) Polym Degrad Stab 91:535–540

    Article  CAS  Google Scholar 

  19. Moroi G (2004) J Anal Appl Pyrolysis 71:485–500

    Article  CAS  Google Scholar 

  20. Moroi G, Bilba D, Bilba N (2004) Polym Degrad Stab 84:207–214

    Article  CAS  Google Scholar 

  21. Moroi G, Ciobanu C (2003) J Anal Appl Pyrolysis 70:87–98

    Article  CAS  Google Scholar 

  22. Moroi G, Ciobanu C (2002) Polym Degrad Stab 78:287–293

    Article  CAS  Google Scholar 

  23. Moroi G, Ciobanu C (2002) Thermochim Acta 385:153–162

    Article  CAS  Google Scholar 

  24. Moroi G, Bilba D, Bilba N (2001) Polym Degrad Stab 72:525–535

    Article  CAS  Google Scholar 

  25. Moroi G, Ciobanu C, Bilba N, Palamaru M (1999) Polym Degrad Stab 65:253–257

    Article  CAS  Google Scholar 

  26. Burger K (1973) Coordination chemistry: Experimental methods. Académiai Kiadó, Budapest, 351

    Google Scholar 

  27. Abdel-Latif SA, El-Roudi OM, Mohamed MGK (2003) J Therm Anal Calorim 73:939–950

    Article  CAS  Google Scholar 

  28. Abramovich ÉS, Meshkovskii IK, Mikhailov VE, Novikov AF, Sevbo SD (1993) J Appl Spectrosc 58:443–444

    Article  Google Scholar 

  29. Otsuki S, Adachi K (1993) J Appl Polym Sci 48:1557–1564

    Article  CAS  Google Scholar 

  30. McCurdie MP, Belfiore LA (1999) J Polym Sci Part B: Polym Phys 37:301–309

    Article  CAS  Google Scholar 

  31. McLean RS, Sauer BB (1997) Macromolecules 30:8314–8317

    Article  CAS  Google Scholar 

  32. Jonquières A, Vicherat A, Lochon P (1999) J Polym Sci Part A: Polym Chem 37:2873–2889

    Article  Google Scholar 

  33. Wang H, Aubuchon SR, Thompson DG, Osborn JC, Marsh AL, Nichols WR, Schoonover JR, Palmer RA (2002) Macromolecules 35:8794–8801

    Article  CAS  Google Scholar 

  34. Liaw DJ, Huang CC, Liaw BY (1998) Polymer 39:3529–3535

    Article  CAS  Google Scholar 

  35. Graff DK, Wang H, Palmer RA, Schoonover JR (1999) Macromolecules 32:7147–7155

    Article  CAS  Google Scholar 

  36. Paik Sung CS, Schneider NS (1977) Macromolecules 10:452–458

    Article  Google Scholar 

  37. Wang LF (2010) Eur Polym J 46:2372–2380

    Article  CAS  Google Scholar 

  38. Bucci R, Magrì AD, Magrì AL, Napoli A (2000) Polyhedron 19:2515–2520

    Article  CAS  Google Scholar 

  39. Wen TC, Wang YJ, Cheng TT, Yang CH (1999) Polymer 40:3979–3988

    Article  CAS  Google Scholar 

  40. Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, De Hosson JTM, Fu YQ (2009) Eur Polym J 45:1904–1911

    Article  CAS  Google Scholar 

  41. Siesler HW (1983) Polym Bull 9:471–478

    CAS  Google Scholar 

  42. Holm RD, Donnelly PL (1966) J Inorg Nucl Chem 28:1887–1894

    Article  CAS  Google Scholar 

  43. Abdel-Latif SA, Hassib HB (2002) J Therm Anal Calorim 68:983–995

    Article  CAS  Google Scholar 

  44. Shibata M, Ito T (2003) Polymer 44:5617–5623

    Article  CAS  Google Scholar 

  45. Zumdahl SS (1986) Chemistry. DC Heath and Comp, Lexington, Massachusetts, 838

    Google Scholar 

  46. Otsuki S, Adachi K (1993) Polym J 25:645–650

    Article  CAS  Google Scholar 

  47. Auten KL, Petrović ZS (2002) J Polym Sci Part B: Polym Phys 40:1316–1333

    Article  CAS  Google Scholar 

  48. Van Bogart JWC, Bluemke DA, Cooper SL (1981) Polymer 22:1428–1438

    Article  Google Scholar 

  49. Dickinson LC, Shi JF, Chien JCW (1992) Macromolecules 25:1224–1228

    Article  CAS  Google Scholar 

  50. Paulmer RDA, Shah CS, Patni MJ, Pandya MV (1991) J Appl Polym Sci 43:1953–1959

    Article  CAS  Google Scholar 

  51. Koberstein JT, Stein RS (1983) J Polym Sci Polym Phys Ed 21:1439–1472

    Article  CAS  Google Scholar 

  52. Wunderlich B, Kashdan WH (1961) J Polym Sci 50:71–78

    Article  CAS  Google Scholar 

  53. Schneider NS, Paik Sung CS, Matton RW, Illinger JL (1975) Macromolecules 8:62–67

    Article  CAS  Google Scholar 

  54. Hale A, Bair HE (1997) In: Turi EA (ed) Thermal characterization of polymeric materials, 2nd edn. Academic Press, San Diego, 752

    Google Scholar 

  55. Govorcin Bajsic E, Rek V, Sendijarevic A, Sendijarevic V, Frish KC (1996) Polym Degrad Stab 52:223–233

    Article  Google Scholar 

  56. Furtado CA, Porto AO, Silva GG, Silva RA, Pimenta MA, Martins-Alves MC, Schilling PJ (2001) J Polym Sci Part B: Polym Phys 39:2572–2580

    Article  CAS  Google Scholar 

  57. Belfiore LA, Graham H, Ueda E (1992) Macromolecules 25:2935–2939

    Article  CAS  Google Scholar 

  58. Baschek G, Hartwig G, Zahradnik F (1999) Polymer 40:3433–3441

    Article  CAS  Google Scholar 

  59. Chen TK, Shieh TS, Chui JY (1998) Macromolecules 31:1312–1320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The contribution of Dr. C. Ciobanu (Institute of Macromolecular Chemistry “Petru Poni” Iaşi, Romania) by providing the polymer employed in this study is gratefully acknowledged. Also, the author is grateful to Prof. X. Han (Changchun Institute of Applied Chemistry, People’s Republic of China) for AAS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela-Nicoleta Moroi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroi, GN. Investigation on structure and properties of cobalt(II)/polyesterurethane metallopolymer films. J Polym Res 19, 18 (2012). https://doi.org/10.1007/s10965-012-0018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0018-z

Keywords

Navigation