Skip to main content
Log in

Constituting redox initiation system of mercapto-cerium salt and realizing highly effective graft-polymerization of MAA on surfaces of silica gel particles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, a new and highly efficient method of surface-initiated free radical graft-polymerizations on the surfaces of silica gel particles was put forward, and the graft-polymerization of methacrylic acid (MAA) was conducted. This method was convenient, feasible and highly effective. Coupling agent γ-mercaptopropyltrimethoxysilane(MPTS) was first bonded onto the surfaces of silica gel particles, obtaining the modified particles MPTS-SiO2, onto which mercapto groups were chemically attached, so a redox initiation system of graft-polymerization was constituted by the mercapto group on the surfaces of MPTS-SiO2 particles and the cerium (IV) salt in the solution. And then the surface-initiated free radical graft-polymerization of MAA on the surfaces of silica gel particles was carried out, resulting in the grafted particles PMAA/SiO2 with a very high grafting density (35 g/100 g) of PMAA. The grafted particles PMAA/SiO2 were characterized by infrared spectrum (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The effects of the main factors on the new surface-initiated graft polymerization were emphatically examined, and the corresponding mechanism of the graft-polymerization was investigated in depth. The experimental results show that the mercapto group-cerium salt system analogous to the hydroxyl group-cerium salt system, can also effectively initiate vinyl monomers to be graft-polymerized on the surfaces of solid particles, and furthermore, it is a highly effective surface-initiated graft-polymerization method. In this graft-polymerization system, several factors such as sulfuric acid concentration, the used amount of cerium salt and the reaction temperature affect the grafting density greatly. For the graft-polymerization of MAA, the appropriate reaction conditions are as follows: reaction time of 3 h, reaction temperature of 50 °C, cerium concentration of 5.0 × 10−3 M, acid (H+ ion) concentration of 0.15 M and MAA concentration of 0.5 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Zhou W-H, Yang H-H, Wang X-R (2009) Talanta 79:141–145

    Article  CAS  Google Scholar 

  2. Helminen J, Paatero E (2006) React Funct Polym 66:1021–1032

    Article  CAS  Google Scholar 

  3. Guo T-Y, Liu P, Zhu J-W, Song M-D, Zhang B-H (2006) Biomacromolecules 7:1196–1202

    Article  CAS  Google Scholar 

  4. Sanchez C, Lebeau B, Chaput F, Boilot J-P (2003) Adv Mater 15:1969–1994

    Article  CAS  Google Scholar 

  5. Kaneko Y, Imai Y, Shirai K, Yamauchi T, Tsubokawa N (2006) Colloids Surf A 289:212–218

    Article  CAS  Google Scholar 

  6. Sun M, Qiu H-D, Wang L-C, Liu X, Jiang S-X (2009) J Chromatogr A 1216:3904–3909

    Article  CAS  Google Scholar 

  7. B-j G, Kong D-l, Zhang Y (2008) J Mol Catal A: Chem 286:143–148

    Article  Google Scholar 

  8. Kaneko Y, Imai Y, Shirai K, Yamauchi T, Tsubokawa N (2006) Colloids Surf A Physicochem Eng Asp 289:212–218

    Article  CAS  Google Scholar 

  9. Shao D-D, Xu K-K, Song X-J, Hu J-H, Yang W-L, Wang C-C (2009) J Colloid Interface Sci 336:526–532

    Article  CAS  Google Scholar 

  10. Liu P, Wang T-M (2007) J Hazard Mater 149:75–79

    Article  CAS  Google Scholar 

  11. Zong S-Z, Cao Y, Zhou Y-M, Ju H-G (2007) Biosens Bioelectron 22:1776–1782

    Article  CAS  Google Scholar 

  12. El Harrak A, Carrot G, Oberdisse J, Jestin J, Boué F (2005) Polymer 46:1095–1104

    Article  Google Scholar 

  13. Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Polymer 49:5636–5642

    Article  CAS  Google Scholar 

  14. Gromadzki D, Makuška R, Netopilı’k M, Holler P, Lokaj J, Janata M, Štěpánek P (2008) Eur Polym J 44:59–71

    Article  CAS  Google Scholar 

  15. Wang Y-M, Wang Y-J, Lu X-B (2008) Polymer 49:474–480

    Article  Google Scholar 

  16. Parnell AJ, Martin SJ, Dang CC, Geoghegan M, Jones RAL, Crook CJ, Howse JR, Ryan AJ (2009) Polymer 50:1005–1014

    Article  CAS  Google Scholar 

  17. Gao B-J, Wang J, An F-Q, Liu Q (2008) Polymer 49:1230–1238

    Article  CAS  Google Scholar 

  18. Hu S-W, Wang Y, McGinty K, Brittain WJ (2006) Eur Polym J 42:2053–2058

    Article  CAS  Google Scholar 

  19. Prucker O, Rühe J (1998) Macromlecules 31:602–613

    Article  CAS  Google Scholar 

  20. Bachmann S, Wang HY, Albert K, Partch R (2007) J Colloid Interface Sci 309:169–175

    Article  CAS  Google Scholar 

  21. Munro NH, Hanton LR, Moratti SC, Robinson BH (2009) Carbohydr Polym 77:496–505

    Article  CAS  Google Scholar 

  22. Jin S-P, Liu M-Z, Chen S-L, Gao C-M (2008) Eur Polym J 44:2162–2170

    Article  CAS  Google Scholar 

  23. Lee H, Boyce JR, Nese A, Sheiko SS, Matyjaszewski K (2008) Polymer 49:5490–5496

    Article  CAS  Google Scholar 

  24. Behling RE, Williams BA, Staade BL, Wolf LM, Cochran EW (2009) Macromolecules 42:1867–1872

    Article  CAS  Google Scholar 

  25. Riachi C, Schqwer N, Klok H-A (2009) Macromolecules 42:8076–8081

    Article  CAS  Google Scholar 

  26. Yagci C, Yildiz U (2005) Eur Polym J 41:177–184

    Article  CAS  Google Scholar 

  27. Fanta GF, Felker FC, Shogren RL (2004) Carbohydr Polym 56:77–84

    Article  CAS  Google Scholar 

  28. Shantha KL, Harding DRK (2002) Carbohydrate Polymer 48:247–253

    Article  CAS  Google Scholar 

  29. Gaffar MA, El-Rafie SM, El-Tahlawy KF (2004) Carbohydr Polym 56:387–396

    Article  CAS  Google Scholar 

  30. Carrillo F, Defays B, Colom X (2008) Eur Polym J 44:4020–4028

    Article  CAS  Google Scholar 

  31. Gao B-J, Hu H-Y, Guo J-F, Li Y-B (2010) Colloids Surf B 77:206–213

    Article  CAS  Google Scholar 

  32. Deng B, Li JY, Hou ZC, Yao SD, Shi LQ, Liang GM, Sheng KL (2008) Radiat Phys Chem 77:898–906

    Article  CAS  Google Scholar 

  33. Tang E, Cheng G-X, Ma X-L (2006) Powder Technol 161:209–214

    Article  CAS  Google Scholar 

  34. Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Polymer 50:3095–3102

    Article  CAS  Google Scholar 

  35. Tsubokawa N, Hayashi S, Nishimura J (2002) Prog Org Coat 44:69–74

    Article  CAS  Google Scholar 

  36. Hayashi S, Fujiki K, Tsubokawa N (2000) React Funct Polym 46:193–201

    Article  CAS  Google Scholar 

  37. Bialk M, Prucker O, Rühe J (2002) Colloids Surf A Physicochem Eng Asp 198–200:543–549

    Article  Google Scholar 

  38. Kaşgöz H, Özgümüş S, Orbay M (2001) Polymer 42:7497–7502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojiao Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Fang, L., Wang, X. et al. Constituting redox initiation system of mercapto-cerium salt and realizing highly effective graft-polymerization of MAA on surfaces of silica gel particles. J Polym Res 19, 4 (2012). https://doi.org/10.1007/s10965-012-0004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0004-5

Keywords

Navigation