Skip to main content
Log in

Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The phase transformation from the α- to the electroactive β-phase of poly(vinylidene fluoride) (PVDF) extruded filaments submitted to different stretching conditions was investigated. Sample filaments of α-PVDF thermoplastic were extruded and stretched uniaxially at different temperatures (80 °C to 120 °C) and stretch ratios (1 to 6). The stretched samples were studied and characterised by x-ray diffraction and quasi-static mechanical experiments. High β-phase contents (~ 80%) are achieved using a stretch ratio of 5 independently of the stretching temperature, between 80 °C and 120 °C. Subsequently, in order to obtain filament geometries and material configurations suitable for application, a two layer filament with coaxial layers was produced by coextrusion. The inner layer consisted of a commercially available grade of a conductive thermoplastic with a polypropylene (PP) matrix. For the outer layer the same grade of PVDF was employed. The double-layer filament was also stretched under the same conditions of the PVDF filaments and the results obtained shows that the inner layer material, acting as an electrode, does not have any influence in the PVDF crystallization process: PVDF crystallizes in the α-phase for stretch ratios of 1 and the α-to β-phase transformation occurs for higher stretch ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lovinger AJ (1982) Developments in crystalline polymers. Elsevier Applied Science, London

    Google Scholar 

  2. Bauer S (1996) J Appl Phys 80:5531

    Article  CAS  Google Scholar 

  3. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics and applications. Marcel Dekker, Inc, New York

    Google Scholar 

  4. Salimi A, Yousefi AA (2003) Polym Test 22:699

    Article  CAS  Google Scholar 

  5. Lanceros-Mendez S, Mano JF, Costa AM, Schmidt VH (2001) J Macromol Sci, B: Phys 40:517

    Article  Google Scholar 

  6. Nakamura K, Sawai D, Watanabe Y, Taguchi D, Takahashi Y, Furukawa T, Kanamoto T (2003) J Polym Sci, B: Polym Phys 41:1701

    Article  CAS  Google Scholar 

  7. Lanceros-Mendez S, Moreira MV, Mano JF, Schmidt VH, Bohannan G (2002) Ferroelectrics 273:15

    Article  CAS  Google Scholar 

  8. Matsushige K, Nagata K, Imada S, Takemura T (1980) Polymer 21:1391

    Article  CAS  Google Scholar 

  9. Gregorio R, Ueno EM (1999) J Mater Sci 34:4489

    Article  CAS  Google Scholar 

  10. Gregorio R Jr, Cestari M (1994) J Polym Sci, B: Polym Phys 32:859

    Article  CAS  Google Scholar 

  11. Gomes J, Serrado Nunes J, Sencadas V, Lanceros-Mendez S (2010) Smart Mater Struct 19(6):065010

    Article  Google Scholar 

  12. Sencadas V, Gregorio R Jr, Lanceros-Mendez S (2009) J Macromol Sci, B: Phys 48:514

    Article  CAS  Google Scholar 

  13. Esterly DM, Love BJ (2004) J Polym Sci, B: Polym Phys 42:91

    Article  CAS  Google Scholar 

  14. Branciforti MC, Sencadas V, Lanceros-Mendez S, Gregorio R Jr (2007) J Polym Sci, B: Polym Phys 45:2793

    Article  CAS  Google Scholar 

  15. Mano JF, Sencadas V, Costa AM, Lanceros-Méndez S (2004) Mater Sci Eng, A 370:336

    Article  Google Scholar 

  16. Furukawa T, Uematsu Y, Asakawa K, Wada Y (1968) J Appl Polym Sci 12:2675

    Article  CAS  Google Scholar 

  17. Fukada E, Sakurai T (1971) Polym J 2:656

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Portuguese Foundation for Science and Technology (FCT) for financial support under POCI, PDTC (PTDC/CTM/108801/2008, PTDC/CTM/69316/2006 and NANO/NMed-SD/0156/2007) and Plurianual programmes. They also wish to thank the IN2TEC initiative of the School of Engineering/University of Minho which supported some specific work on piezoelectric filaments. P.C. and V. S. thank the FCT grants SFRH/BD/64267/2009 and SFRH/BPD/63148/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senentxu Lanceros-Mendez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, A., Costa, P., Carvalho, H. et al. Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. J Polym Res 18, 1653–1658 (2011). https://doi.org/10.1007/s10965-011-9570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9570-1

Keywords

Navigation