Skip to main content
Log in

Local Electrical Characterization of PVDF Textile Filament

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The piezoelectric behavior of poly(vinylidene fluoride), PVDF, has been known for several decades and is clearly related to its crystalline phases. Many works made on films or fibers have focused on the characterization of the phase transitions during various PVDF processing and on its electromechanical activity by combining several techniques. Piezo-force microscopy (PFM) is an interesting tool to underline the crystalline forms and piezoelectricity efficiency of PVDF at the local scale. However, this technique is little used on samples in the form of fibers and in this case, it is most often nanofibers. In this work, two conventional PVDF textile filaments, with different weak draw ratio, are produced and analyzed by FTIR, XRD, and PFM. We demonstrate that the PFM analysis can be relevant for specimens presenting low signals during other characterizations. Therefore, the local piezo-/ferroelectricity into the fiber is highlighted underlining the existence of the polar phases of PVDF. Then, the effective piezoelectric coefficient d33 of PVDF fiber drawn with a ratio of 1.5 is estimated at 12 pm/V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Koncar in “Smart Textiles and their Applications” (V. Kocar Ed.), pp.1–8, Woodhead Publishing, Oxford, 2016.

  2. S. Scataglini, G. Andreoni, and J. Gallant, Proc. 2015 Work Wearable Syst. Appl., pp.53–54, Italy, 2015.

  3. R. Nayak, L. Wang, and R. Padhye in “Electronic Textiles: Smart Fabrics and Wearable Technology” (T. Tilak Ed.), pp.239–256, Woodhead Publishing, Oxford, 2015.

  4. R. Soukup, T. Blecha, A. Hamacek, and J. Reboun, Proc. of the 5th Electronics System-integration Technology Conference (ESTC), pp.1–5, Finland, 2014.

  5. S. Mandal and G. Song, Text. Res. J., 85, 101 (2014).

    Article  CAS  Google Scholar 

  6. P. Brauner, J. van Heek, M. Ziefle, N. Al-huda Hamdan, and J. O. Borchers, Proc. of the 2017 ACM International Conference on Interactive Surfaces and Spaces, pp.151–160, United Kingdom, 2017.

  7. J. Berzowska, Textile, 3, 58 (2005).

    Article  Google Scholar 

  8. B. Zhou, G. Bahle, L. Fürg, M. S. Singh, H. Z. Cruz, and P. Lukowicz, Proc. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp.85-87, USA, 2017.

  9. D. Tama, P. Gomes, M. J. Abreu, A. P. Souto, and H. Carvalho, Proc. XIV Int. Izmir Text. Appar. Symp., Turkey, 2017.

  10. A. Pantelopoulos and N. G. Bourbakis, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40, 1 (2010).

    Article  Google Scholar 

  11. M. Stoppa and A. Chiolerio, Sensors, 14, 11957 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. V. Kaushik, J. Lee, J. Hong, S. Lee, S. Lee, J. Seo, C. Mahata, and T. Lee, Nanomaterials, 5, 1493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. R. Anton and H. A. Sodano, Smart Mater. Struct., 16, R1 (2007).

    Article  CAS  Google Scholar 

  14. A. Marino, G. G. Genchi, V. Mattoli, and G. Ciofani, Nano Today, 14, 9 (2017).

    Article  CAS  Google Scholar 

  15. A. Marino, G. G. Genchi, E. Sinibaldi, and G. Ciofani, ACS Appl. Mater. Interfaces, 9, 17663 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. P. Ueberschlag, Sensor Rev., 21, 118 (2001).

    Article  Google Scholar 

  17. C. Dagdeviren, P. Joe, O. L. Tuzman, K.-II Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, Extreme Mech. Lett., 9, 269 (2016).

    Article  Google Scholar 

  18. K. S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct., 23, 033001 (2014).

    Article  CAS  Google Scholar 

  19. A. J. Lovinger, Macromolecules, 15, 40 (1982).

    Article  CAS  Google Scholar 

  20. P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci., 39, 683 (2014).

    Article  CAS  Google Scholar 

  21. V. Sencadas, S. Lanceros-Méndez, and J. F. Mano, Thermochim. Acta, 424, 201 (2004).

    Article  CAS  Google Scholar 

  22. W. Steinmann, S. Walter, G. Seide, T. Gries, G. Roth, and M. Schubnell, J. Appl. Polym. Sci., 120, 21 (2010).

    Article  CAS  Google Scholar 

  23. P. Holstein, U. Scheler, and R. K. Harris, Polymer, 39, 4937 (1998).

    Article  CAS  Google Scholar 

  24. B. Glauß, W. Steinmann, S. Walter, M. Beckers, G. Seide, T. Gries, and G. Roth, Materials (Basel), 6, 2642 (2013).

    Article  CAS  Google Scholar 

  25. J. Wu and J. M. Schultz, Macromolecules, 33, 1765 (2000).

    Article  CAS  Google Scholar 

  26. M. T. Riosbaas, K. J. Loh, G. O’Bryan, and B. R. Loyola, Proc. SPIE, 9061, 90610Z-1, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, USA, 2014.

  27. M. G. Veitmann, D. Chapron, S. Bizet, S. Devisme, J. Guilment, and P. Chapron, 1st Workshop Innovative and Avanced Processing for Polymer, Lyon, 2017.

  28. R. Khajavi and M. Abbasipour in “Industrial Applications for Intelligent Polymers and Coatings” (M. Hosseini and A. S. H. Makhlouf Eds.), pp.313–336, Springer International Publishing, Switzerland, 2016.

  29. K. Magniez, A. Krajewski, M. Neuenhofer, and R. Helmer, J. Appl. Polym. Sci., 129, 2699 (2013).

    Article  CAS  Google Scholar 

  30. ANSI/IEEE Std, 176–1987, IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, Inc., New York, USA, 1987.

  31. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci., 28, 101 (1998).

    Article  CAS  Google Scholar 

  32. N. Balke, I. Bdikin, S. V. Kalinin, and A. L. Kholkin, J. Am. Ceram. Soc., 92, 1629 (2009).

    Article  CAS  Google Scholar 

  33. A. Baji, Y. W. Mai, Q. Li, and Y. Liu, Nanoscale, 3, 3068 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. A. Baji, Y. W. Mai, Q. Li, and Y. Liu, Compos. Sci. Technol., 71, 1435 (2011).

    Article  CAS  Google Scholar 

  35. V. Sencadas, C. Ribeiro, I. K. Bdikin, A. L. Kholkin, and S. Lanceros-Mendez, Phys. Status Solidi, 209, 2605 (2012).

    Article  CAS  Google Scholar 

  36. M. Kanik, O. Aktas, H. S. Sen, E. Durgun, and M. Bayindir, ACS Nano, 8, 9311 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramol, and E. Siores, Energ. Environ. Sci., 7, 1670 (2014).

    Article  CAS  Google Scholar 

  38. M. Boudriaux, F. Rault, C. Cochrane, G. Lemort, C. Campagne, E. Devaux, and C. Courtois, J. Appl. Polym. Sci., 133, 43244 (2016).

    Article  CAS  Google Scholar 

  39. R. Desfeux, A. Ferri, C. Legrand, L. Maës, A. Da Costa, G. Poullain, R. Bouregba, C. Soyer, and D. Rèmiens, Int. J. Nanotechnol., 5, 827 (2008).

    Article  CAS  Google Scholar 

  40. T. Carlier, M-H. Chambrier, A. Ferri, S. Estradé, J-F. Blach, G. Martin, B. Meziane, F. Peiro, P. Roussel, F. Ponchel, D. Rèmiens, A. Cornet, and R. Desfeux, ACS Appl. Mater. Inter., 7, 24409 (2015).

    Article  CAS  Google Scholar 

  41. B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology, 18, 475504 (2007).

    Article  CAS  Google Scholar 

  42. S. Ramasundaram, S. Yoon, K. J. Kim, and C. Park, J. Polym. Sci. Pol. Phys., 46, 2173 (2008).

    Article  CAS  Google Scholar 

  43. J. Chang, M. Dommer, C. Chang, and L. Lin, Nano Energy, 1, 356 (2012).

    Article  CAS  Google Scholar 

  44. V. M. Fridkin and S. Ducharme, Phys. Solid State, 43, 1320 (2001).

    Article  CAS  Google Scholar 

  45. C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, and U. Gösele, Appl. Phys. A, 70, 261 (2000).

    Article  CAS  Google Scholar 

  46. D. Martin, J. Müller, T. Schenk, T. M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Müller, D. Pohl, U. Schröder, S. V. Kalinin, and T. Mikolajick, Adv. Mater., 26, 8198 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J.-M. Triscone, Nano Lett., 14, 4205 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. A. Gruverman, A. Kholkin, A. Kingon, and H. Tokumoto, Appl. Phys. Lett., 78, 2751 (2001).

    Article  CAS  Google Scholar 

  49. J. Hong, H. W. Song, S. Hong, H. Shn, S. Gu, and K. No, J. Appl. Phys., 92, 7434 (2002).

    Article  CAS  Google Scholar 

  50. A. Venimadhav in “Advances in Polymer Materials and Technology” (A. Srinivasan and S. Bandyopadhyay Eds.), pp.439–465, CRC Press Taylor & Francis Group, Boca Raton, 2016.

  51. L. Yang, X. Li, E. Allahyarov, P. L. Taylor, Q. M. Zhang, and L. Zhu, Polymer, 54, 1709 (2013).

    Article  CAS  Google Scholar 

  52. M. A. McLachlan, D. W. McComb, M. P. Ryan, A. N. Morozovska, E. A. Eliseev, E. A. Payzant, S. Jesse, K. Seal, A. P. Baddorf, and S. V. Kalinin, Adv. Funct. Mater., 21, 941 (2011).

    Article  CAS  Google Scholar 

  53. Y. Liu, D. N. Weiss, and J. Li, ACS Nano, 4, 83 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Y-Y. Choi, P. Sharma, C. Phatak, D. J. Gosztola, Y. Liu, J. Lee, B. Lee, J. Li, A. Gruverman, S. Ducharme, and S. Hong, ACS Nano, 9, 1809 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. M. Sharma, V. Srinivas, G. Madras, and S. Bose, RSC Adv., 6, 6251 (2016).

    Article  CAS  Google Scholar 

  56. C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, Nano Lett., 10, 726 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, Nat. Commun., 4, 1610 (2013).

    Article  CAS  Google Scholar 

  58. V. Cauda, G. Canavese, and S. Stassi, J. Appl. Polym. Sci., 132, 41667 (2015).

    Article  CAS  Google Scholar 

  59. Y. Calahorra, R. A. Whiter, Q. Jing, V. Narayan, and S. Kar-Narayan, APL Mater., 4, 116106 (2016).

    Article  CAS  Google Scholar 

  60. R. A. Whiter, Y. Calahorra, C. Ou, and S. Kar-Narayan, Macromol. Mater. Eng., 301, 1016 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is carried out under the regional program “Projets Emergents” and in the framework of the project entitled “Development of tricomponent piezoelectric polymer fibers for energy harvesting textiles”. The authors thank the Region Nord-Pas-de-Calais (France) for its financial support, and also gratefully acknowledge Solvay for the supply of PVDF. The “Région Hauts-de-France” and the “Fonds Européen de Développement Régional (FEDER)” under the “Contrat de Plan État-Région (CPER)” project “Chemistry and Materials for a Sustainable Growth” are also gratefully acknowledged for funding of MFP-3D microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Rault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, A., Rault, F., Da Costa, A. et al. Local Electrical Characterization of PVDF Textile Filament. Fibers Polym 20, 1333–1339 (2019). https://doi.org/10.1007/s12221-019-8519-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8519-6

Keywords

Navigation