Skip to main content
Log in

Liquid crystalline epoxy resin modified cyanate ester for high performance electronic packaging

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A high performance modified cyanate ester (CE) resin system with significantly improved toughness, water resistance and dimensional stability was developed by copolymerizing CE resin with liquid crystalline epoxy resin (LCE) for electronic packaging. Four LCE/CE resins with different contents of LCE were prepared to systemically evaluate the effect of the content of LCE on the key properties of the modified system such as mechanical, dielectric and thermal properties as well as water resistance. Results reveal that the addition of LCE to CE can not only decrease the curing temperature of CE, but also significantly improve the integrated properties including mechanical and dielectric properties, thermal resistance as well as water resistance of cured resin. For example, compared with the whole exothermic peak of CE, that of LCE10/CE significantly shifts toward low temperature with a gap of about 15°C. On the other hand, the impact strength of cured LCE10/CE resin (22 kJ/m2) is about 2.1 times of that of CE resin; while the water absorption of the former is only 81.2% of that of the latter. In addition, cured LCE/CE resins also exhibit lower and more stable dielectric loss than CE resin over the whole frequency range from 10 to 106 Hz. All these improvements in macro-performance by the addition of LCE to CE resin are not only ascribed to the cross-linked chemical structure, but also attributed to the rigid structure of liquid crystalline resin. The outstanding integrated properties of LCE/CE resins suggest great potential to be applied in the field of high performance electronic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brownlee K, Raj PM, Bhattacharya Sk, Shinotani K, Wong CP, Tummala RR (2002) Evaluation of Liquid Crystal Polymers for High Performance SOP Applications in ‘52nd Electronic Components and Technology Conference San Diego, USA, 16: 676-680

  2. Guo Y (2004) Handbook of Moire measurement. Chemical, Beijing

    Google Scholar 

  3. Ling W, Gu AJ, Liang GZ, Yuan L, Liu J (2010) Polym Adv Technol 21:365–370

    CAS  Google Scholar 

  4. Snow AW, Buckley LJ (1999) In: Nalwa H (ed) Handbook of low and high dielectric constant materials and their applications, 2nd edn. Academic, San Diego

    Google Scholar 

  5. Badrinarayanan P, Mac Murray B, Kessler MR (2009) J Mater Res 24:2235–2242

    Article  CAS  Google Scholar 

  6. Hamerton I, Howlin BJ, Klewpatinond P, Takeda S (2009) Macromolecules 42:7718–7735

    Article  CAS  Google Scholar 

  7. Wooster TJ, Abrol S, Hey JM, MacFarlane DR (2004) Composites Part A 35:75–82

    Article  Google Scholar 

  8. Karad SK, Attwood D, Jones FR (2005) Composites Part A 36:764–771

    Article  Google Scholar 

  9. Gu AJ (2006) Compos Sci Technol 66:1749–1755

    Article  CAS  Google Scholar 

  10. Zhou C, Gu AJ, Liang GZ, Yuan L (2009) Polym Adv Technol. doi:101002/pat1570

  11. Ren PG, Liang GZ, Zhang ZP (2006) Polym Compos 27:402–409

    Article  Google Scholar 

  12. Zhan GZ, Yu YF, Tang XL, Tao QS, Li SJ (2006) J Polym Sci Part B: Polym PhysH 44:517–523

    Article  CAS  Google Scholar 

  13. Suman JN, Kathi J, Taammishetti S (2005) Euro Polym J 41:2963–2972

    Article  CAS  Google Scholar 

  14. Yang CZ, Gu AJ, Song HW, Xu ZB, Fang ZP, Tong LF (2007) J Appl Polym Sci 105:2020–2026

    Article  CAS  Google Scholar 

  15. Kard SK, Attwood D, Rjones F (2005) Composites Part A 36:764–771

    Article  Google Scholar 

  16. Galina H, Leszczak MB (2007) J Appl Polym Sci 105:224–228

    Article  CAS  Google Scholar 

  17. Liu GL, Zhou B, Zhao DM, Li Q, Gao JG (2008) Macromol Chem Phys 209:1160–1169

    Article  CAS  Google Scholar 

  18. Lee JY, Jang J (2006) Polymer 47:3036–3042

    Article  CAS  Google Scholar 

  19. Jang J, Lee JY (2007) J Appl Polym Sci 106:2198–2203

    Article  CAS  Google Scholar 

  20. Yu YF, Gan WJ, Liu XY, Li SJ (2008) J Appl Polym Sci 109:2964–2972

    Article  CAS  Google Scholar 

  21. Jahromi S, Lub J, Mol GN (1994) Polymer 35:622–629

    Article  CAS  Google Scholar 

  22. Braun D, Cherdron H, Kern W, Huan B (1981) Translation, Techniques of Polymer Syntheses and Characterization. Chin Sci Publ, Beijing

    Google Scholar 

  23. Dai SK, Gu AJ, Liang GZ, Yuan L (2009) Polym Adv Technol. doi:101002/pat1528

  24. Zeng MF, Lu CY, Wang BY, Qi CZ (2010) Radiat Phys Chem 79:966–975

    Article  CAS  Google Scholar 

  25. Premkumar R, Karikalchozhan C, Alagar M (2008) Eur Polym J 44:2599–2607

    Article  CAS  Google Scholar 

  26. Musto P, Martuscelli E, Ragosta G, Russo P, Scarinzi G (1998) J Appl Polym Sci 69:1029–1042

    Article  CAS  Google Scholar 

  27. Keating MY, Sauer BB, Flexman EA (1997) J Macrol Sci B 36:717–732

    Article  Google Scholar 

  28. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  29. Nagendiran S, Premkumar S, Alagar M (2007) J Appl Polym Sci 106:1263–1273

    Article  CAS  Google Scholar 

  30. Goertzen WK, Kessler MR (2008) Composites Part A 39:761–768

    Article  Google Scholar 

  31. Arthur WS, Leonard JB (1999) In: Nalwa H (ed) Handbook of low and high dielectric constant materials and their applications, 4th edn. Academic, San Diego H

    Google Scholar 

  32. Liang GZ, Zhang MX (2002) J Appl Polym Sci 85:2377–2381

    Article  CAS  Google Scholar 

  33. Konecny P, Cerny M, Voldanova J, Malac J, Simonik J (2007) Polym Adv Technol 18:122–127

    Article  CAS  Google Scholar 

  34. Khonakdar HA, Wagenknecht U, Jafari SH, Hassler R, Eslami H (2004) Adv Polym Technol 23:307–315

    Article  CAS  Google Scholar 

  35. Thomas S, George A (1992) Eur Polym J 28:1451–1458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Grant No. 20974076), “Qin Lan Project” (2008), “333 Talent Project” (2008), and “Six Talent Peaks” (2008) of Jiangsu Province in China for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijuan Gu or Guozheng Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Gu, A., Liang, G. et al. Liquid crystalline epoxy resin modified cyanate ester for high performance electronic packaging. J Polym Res 18, 1441–1450 (2011). https://doi.org/10.1007/s10965-010-9549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9549-3

Keywords

Navigation