Skip to main content
Log in

Synergetic improvements of intrinsic thermal conductivity and breakdown strength in liquid crystal epoxy resin for high voltage applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Heat conductive epoxy composites as electronic packaging materials present wider applications. However, the high loading of fillers required for a high thermal conductivity (k) inevitably degrades the electrical resistivity and breakdown strength (Eb) of epoxy composites, significantly limiting their urgent applications in high voltage fields. The key to tackling this dilemma is to improve the intrinsic k of pristine epoxy with inherently disordered structure. Liquid crystal epoxy (LCE) containing rod-shaped mesogenic units and flexible segments, emerges as a unique epoxy resin presenting inherently high-k realized via self-assembling the mesogens into ordered domains, represents a promising solution to this critical issue. In this work, two types of LCEs, i.e., BE and LCM6, were designed and synthesized, and their LC behaviors were investigated. Further, the thermal and electric properties of the 4,4-methylenedianiline cured BE/LCM6 were explored as a function of the LCM6 loading. The results reveal that the cured BE/LCM6 at an optimal ratio showcases the obviously elevated k and Eb along with low dielectric permittivity and loss, when compared with traditional epoxy and a single LCE component. The concurrent enhancement in both k and Eb is ascribed to the introduced ordered domains resulting from the self-assembled mesogens into the cured epoxy network, which pave the highway for phonon transport and impede the migration of charge carries. The prepared LCEs with high k and Eb show appealing application prospects in electrical power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Research data are not shared.

References

  1. Evans AM, Giri A, Sangwan VK, Xun S, Bartnof M, Torres-Castanedo CG, Balch HB, Rahn MS, Bradshaw NP, Vitaku E, Burke DW, Li H, Bedzyk MJ, Wang F, Bredas J-L, Malen JA, McGaughey AJH, Hersam MC, Dichtel W, Hopkins R (2021) Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat Mater 20(8):1142–1148

    Article  CAS  PubMed  Google Scholar 

  2. Zhou W, Zhang Y, Wang J, He L, Xu W, Li B, Chen LQ, Wang Q (2020) Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets. ACS Appl Mater Inter 12(41):46767–46778

    Article  CAS  Google Scholar 

  3. Zhao L, Chen Z, Ren J, Yang L, Li Y, Wang Z, Ning W, Jia S (2022) Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microsphere. J Colloid Interf Sci 627:205–214

    Article  CAS  Google Scholar 

  4. Zhao L, Wei C, Ren J, Li Y, Zheng J, Jia L, Wang Z, Jia S (2022) Biomimetic nacreous composite films toward multipurpose application structured by aramid nanofibers and edge-hydroxylated boron nitride nanosheets. Ind Eng Chem Res 61(25):8881–8894

    Article  CAS  Google Scholar 

  5. Li Y, Liu C, Zhou W, Hou Z, Shi Q, Gong C, Wu Y (2021) Microscopic ordered structure compactness and intrinsic thermal conductivity improvement of dispersed liquid crystal films of flexible epoxy-thiol polymers. Mater Today Commun 29:102792

    Article  CAS  Google Scholar 

  6. Li Y, Gong C, Li C, Li C, Ruan K, Liu C, Liu H, Gun J (2021) Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films. J Mater Sci Technol 82:250–256

    Article  CAS  Google Scholar 

  7. Li Y, Pan P, Liu C, Zhou W, Li C, Gong C, Li H, Zhang L, Hui S (2020) Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity. J Polym Eng 40(7):573–581

    Article  CAS  Google Scholar 

  8. Barzic AI, Hulubei C, Avadanei MI, Stoica L, Popovici D (2015) Polyimide precursor pattern induced by banded liquid crystal matrix: Effect of dianhydride moieties flexibility. J Mater 50:1358–1369

    Article  CAS  Google Scholar 

  9. Chen J, Huang X, Zhu Y, Jiang P (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27(5):1604754

    Article  Google Scholar 

  10. Yang R, Chen L, Ruan C, Zhong HY, Wang YZ (2014) Chain folding in main-chain liquid crystalline polyesters: from π-π stacking toward shape memory. J Mater Chem C 2(30):6155–6164

    Article  CAS  Google Scholar 

  11. Zhong X, Ruan K, Gu J (2022) Enhanced thermal conductivities of liquid crystal polyesters from controlled structure of molecular chains by introducing different dicarboxylic acid monomers. Research. https://doi.org/10.34133/2022/9805686

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Chen G, Wu K, Shi J, Liang L, Lu M (2020) Biphenyl liquid crystal epoxy containing flexible chain: synthesis and thermal properties. J Appl Polym Sci 137(38):49143

    Article  CAS  Google Scholar 

  13. Aziz T, Haq F, Farid A, Cheng L, Chuah LF, Bokhari A, Mubashir M, Tang DYY, Show PL (2023) The epoxy resin system: function and role of curing agents. Carbon Lett. https://doi.org/10.1007/s42823-023-00547-7

    Article  Google Scholar 

  14. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nanomicro Lett 13:1–9

    Google Scholar 

  15. Qian X, Zhou J, Chen G (2021) Phonon-engineered extreme thermal conductivity materials. Nat Mater 20(9):1188–1202

    Article  CAS  PubMed  Google Scholar 

  16. Ruan K, Guo Y, Lu C, Shi X, Ma T, Zhang Y, Kong J, Gu J (2021) Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research. https://doi.org/10.34133/2021/8438614

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang L, He M, Na X, Guan X, Zhang R, Zhang J, Gu J (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun 16:5–10

    Article  Google Scholar 

  18. Ou X, Chen S, Lu X, Lu Q (2021) Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Compos Commun 23:100549

    Article  Google Scholar 

  19. Tang J, Feng Y, Feng W (2021) Photothermal storage and controllable release of a phase-change azobenzene/aluminum nitride aerogel composite. Compos Commun 23:100575

    Article  Google Scholar 

  20. Yang X, Zhong X, Zhang J, Gu J (2021) Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J Mater Sci Technol 68:209–215

    Article  CAS  Google Scholar 

  21. Zhao L, Wei C, Li Z, Wei W, Jia L, Huang X, Ning W, Wang Z, Ren J (2021) High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater Des 210:110124

    Article  CAS  Google Scholar 

  22. Ren J, Jiang G, Wang Z, Qing Q, Teng F, Jia Z, Wu G, Jia S (2024) Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering. Adv Compos Hybrid Ma 7(1):5

    Article  CAS  Google Scholar 

  23. Jeong I, Kim CB, Kang DG, Jeong KU, Jang SG, You NH, Ahn S, Lee DS, Goh M (2019) Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole-dipole interactions. J Polym Sci Polym Chem 57(6):708–715

    Article  CAS  Google Scholar 

  24. Wang Y, Zhou W, Cao D, Li T, Cao G, Zhang X (2022) Progress in intrinsically thermal conductive liquid crystalline epoxy and composites. Acta Materiae Compositae Sinica 39(5):2060–2072

    Google Scholar 

  25. Zhou W, Wang Y, Cao G, Cao D, Li T, Zhang X (2021) Progress in intrinsic thermally conductive polymers. Acta Materiae Compositae Sinica 38(7):2038–2055

    Google Scholar 

  26. Zhou W, Wang F, Yang Y, Wang Y, Zhao Y, Zhang L (2023) Research on intrinsically thermal conductive polymers. Heat Conduction Mechanism, Structure & Performances and Applications. Prog Chem 35(7):1106–1122. https://doi.org/10.7536/PC221102

    Article  CAS  Google Scholar 

  27. Zhou W, Yao T, Yuan M, Yang Y, Zheng J, Liu J (2023) Research progress of intrinsic polymer dielectrics with high thermal conductivity. IET Nanodielectr 4(6):165–181. https://doi.org/10.1049/ned2.12052

    Article  Google Scholar 

  28. Zhou W, Wang Kong F, Peng W, Wang Y, Yuan M, Han X, Liu X, Li B (2023) Advances in liquid crystal epoxy: molecular structures, thermal conductivity, and promising applications in thermal management. Energy Environ Mater. https://doi.org/10.1002/eem2.12698

    Article  Google Scholar 

  29. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518

    Article  Google Scholar 

  30. Guo H, Lu M, Liang L, Wu K, Ma D, Xue W (2017) Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity. J Electron Mater 46:982–991

    Article  CAS  Google Scholar 

  31. Zeng X, Ye L, Guo K, Sun R, Xu J, Wong C (2016) Fibrous epoxy substrate with high Thermal Conductivity and Low Dielectric Property for Flexible Electronics. Adv Electron Mater 2(5):1500485

    Article  Google Scholar 

  32. Harada M, Hamaura N, Ochi M, Agari Y (2013) Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos B Eng 55:306–313

    Article  CAS  Google Scholar 

  33. Lin YS, Hsu SL, Ho TH, Cheng SS, Hsiao YH (2016) Synthesis, characterization, and thermomechanical properties of liquid crystalline epoxy resin containing ketone Mesogen. Polym Eng Sci 57:424–431

    Article  Google Scholar 

  34. Tang L, Zhang J, Gu J (2021) Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites. CJA 34(2):659–668

    Google Scholar 

  35. Gao B, Zhang J, Hao Z, Huo L, Zhang R, Shao L (2017) In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites. Carbon 123:548–557

    Article  CAS  Google Scholar 

  36. Li Y, Li C, Zhang L, Zhou W (2019) Zhang L Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane. J Mater Sci-Mater El 30:8329–8338

    Article  CAS  Google Scholar 

  37. Dang J, Zhang J, Li M, Dang L, Gu J (2022) Enhancing intrinsic thermal conductivities of epoxy resins by introducing biphenyl mesogen-containing liquid crystalline co-curing agents. Polym Chem 13(42):6046–6053

    Article  CAS  Google Scholar 

  38. Kou Y, Zhou W, Li B, Dong L, Duan Y-E, Hou Q, Liu X, Cai H, Chen Q, Dang Z-M (2018) Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene. Compos Part Appl Sci Manuf 114:97–106

    Article  CAS  Google Scholar 

  39. Dong L, Zhou W, Sui X, Wang Z, Cai H, Wu P, Zuo J, Liu X (2016) A carboxyl-terminated polybutadiene liquid rubber modified epoxy resin with enhanced toughness and excellent electrical properties. J Electron Mater 45:3776–3785

    Article  CAS  Google Scholar 

  40. Zhu Z, Sun X, Yuan H, Song C, Cao Y, Li X (2018) Determination of gel time and gel point of epoxy-amine thermosets by in-situ near infrared spectroscopy. Polym Test 72:416–422

    Article  CAS  Google Scholar 

  41. Wang Z, Hou G, Xie J, Zhang Z, Zhang X, Cai J (2023) Degradable bio-based fluorinated epoxy resin with excellent flame-retardant, dielectric, hydrophobic, and mechanical properties. Adv Compos Hybrid Ma 6(4):1–15

    Google Scholar 

  42. Lin N, Yin R, Zhou W, Zhang M, Kong F, Gong M, Lei X, Cao Z, Di-wu J, Li W, Zhao Y (2023) Investigation into ameliorative dielectric properties of silicon/poly (vinylidene fluoride) composites by engineering insulating aluminum oxide shell as an interlayer. J Appl Polym Sci 140(40):1–16

    Article  CAS  Google Scholar 

  43. Fan X, Liu Z, Wang S, Gu J (2023) Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures. SusMat. https://doi.org/10.1002/sus2.172

    Article  Google Scholar 

  44. Yao T, Zhou W, Cao G, Peng W, Liu J, Dong X, Chen X, Zhang Y, Chen Y, Yuan M (2023) Engineering of core@double-shell structured Zn@ZnO@PS particles in PVDF composites towards significantly enhanced dielectric performances. J Appl Polym Sci 140(17):e53772

    Article  CAS  Google Scholar 

  45. Zhou W, Cao G, Yuan M, Zhong S, Wang Y, Liu X, Cao D, Peng W, Liu J, Wang G, Dang Z, Li B (2023) Core-shell engineering of conductive fillers toward enhanced dielectric properties: a universal polarization mechanism in polymer conductor composites. Adv Mater 35(2):2207829

    Article  CAS  Google Scholar 

  46. Zhang Y, Zhou W, Peng W, Yao T, Zhang Y, Wang B, Cai H, Li B (2023) Core@double-shell engineering of Zn particles towards elevated dielectric properties: multiple polarization mechanisms in Zn@Znch@PS/PVDF composites. Macromol Rapid Comm. https://doi.org/10.1002/marc.202300585

    Article  Google Scholar 

  47. He P, Ma W, Xu J, Wang Y, Cui Z, Wei J, Zuo P, Liu X, Zhuang Q (2023) Hierarchical and orderly surface Conductive Networks in Yolk-Shell Fe3O4@C@Co/N-Doped C microspheres for enhanced microwave absorption. Small 19(40):2302961

    Article  CAS  Google Scholar 

  48. Zuo P, Jiang J, Chen D, Lin J, Zhao Z, Sun B, Zhuang Q (2023) Enhanced interfacial and dielectric performance for polyetherimide nanocomposites through tailoring shell polarities. ACS Appl Mater Inter 15(19):23792–23803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 52277028, 22205180), the Special Project for Local Service of Education Department of Shaanxi Provincial Government (22JC052), Priority Research and Development Foundations of Xianyang City Government (2021ZDYF-GY-0026), and the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Contributions

Jingyu Di-wu: Data curation, Formal analysis, Methodology, Writing – original draft. Wenying Zhou: Conceptualization, Funding acquisition, Supervision, Writing – review and editing. Yun Wang: Data curation. Ying Li: Conceptualization. Yajuan Lv: Visualization. Yanqing Zhang: Methodology, Visualization. Nan Zhang: Data curation. Qingguo Chen: Funding acquisition, Supervision.

Corresponding authors

Correspondence to Wenying Zhou or Qingguo Chen.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di-wu, J., Zhou, W., Wang, Y. et al. Synergetic improvements of intrinsic thermal conductivity and breakdown strength in liquid crystal epoxy resin for high voltage applications. J Polym Res 31, 72 (2024). https://doi.org/10.1007/s10965-024-03919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03919-3

Keywords

Navigation