Skip to main content
Log in

Study on the influence of metal residue on thermal degradation of poly(cyclohexene carbonate)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(cyclohexene carbonate) (PCHC) is an alternative copolymer of carbon dioxide and cyclohexene oxide. Severe thermal decomposition occurs during melt processing of PCHC, thus, it is important to find the reason for thermal decomposition and raise its thermal stability. In this report, as-polymerized PCHC was obtained under Y(CCl3COO)3-ZnEt2-glycerin rare earth coordination ternary catalyst. The pyrolysis gas chromatography with mass spectrometry analysis disclosed that chain unzipping depolymerization dominated the thermal decomposition process. The residue metal (mainly ZnO in this catalyst system) was important in PCHC degradation, and the onset decomposition temperature of PCHC containing 5 ppm zinc was 56 °C higher than that of PCHC containing 4,400 ppm Zn, corresponding to apparent activation energy change from 190 KJ/mol to 146 KJ/mol. When PCHC was subjected to melt processing, its average molecular weight decreased more rapidly, as it contained more catalyst residue, indicating metal residue in PCHC could accelerate the decomposition process, and removing the metal residue should be effective in raising its thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inoue S, Koinuma H, Tsuruta T (1969) Makromol Chem 130:210

    Article  CAS  Google Scholar 

  2. Inoue S, Koinuma H, Tsuruta T (1969) J Polym Sci Part B: Polym Lett 7:287

    Article  CAS  Google Scholar 

  3. Kuran W, Pasynkiewicz S, Skupinska J, Rokicki A (1976) Makromol Chem 177:11

    Article  CAS  Google Scholar 

  4. Soga K, Uenishi K, Hosoda S, Ikeda S (1977) Makromol Chem 178:893

    Article  CAS  Google Scholar 

  5. Aida T, Ishikawa M, Inoue S (1986) Macromolecules 19:8

    Article  CAS  Google Scholar 

  6. Chen XH, Shen ZQ, Zhang YF (1991) Macromolecules 24:5305

    Article  CAS  Google Scholar 

  7. Darensbourg DJ, Holtcamp MW (1995) Macromolecules 28:7577

    Article  CAS  Google Scholar 

  8. Cheng M, Darling NA, Lobkovsky EB, Coates GW (2000) Chem Commun 2007

  9. Darensbourg DJ, Rainey P, Yarbrough J (2001) Inorg Chem 40:986

    Article  CAS  Google Scholar 

  10. Lu XB, Wang Y (2004) Angew Chem Int Edit 43:3574

    Article  CAS  Google Scholar 

  11. Ren WM, Zhang X, Liu Y, Li JF, Wang H, Lu XB (2010) Macromolecules 43:1396

    Article  CAS  Google Scholar 

  12. Yoo J, Na SJ, Park HC, Cyriac A, Lee BY (2010) Dalton Trans 39:2622

    Article  CAS  Google Scholar 

  13. Tan CS, Hsu TJ (1997) Macromolecules 30:3147

    Article  CAS  Google Scholar 

  14. Liu BY, Zhao XJ, Wang XH, Wang FS (2001) J Polym Sci Part A: Polym Chem 39:2751

    Article  Google Scholar 

  15. Inoue S, Tsuruta T (1975) Applied Polymer Symposia 26:257

    CAS  Google Scholar 

  16. Liu BH, Chen LB, Zhang M, Yu AF (2002) Macromol Rapid Commun 23:881

    Article  CAS  Google Scholar 

  17. Dixon DD, Ford ME, Mantell GJ (1980) J Polym Sci Part B: Polym Lett 18:131

    CAS  Google Scholar 

  18. Lai MF, Li J, Liu JJ (2005) J Therm Anal Calorim 82:293

    Article  CAS  Google Scholar 

  19. Peng S, An Y, Chen C, Fei B, Zhuang Y, Dong L (2003) Polym Degrad Stab 80:141

    Article  CAS  Google Scholar 

  20. Koning C, Wildeson J, Parton R, Plum B, Steeman P, Darensbourg D (2001) J Polymer 42:3995

    Article  CAS  Google Scholar 

  21. Thorat SD, Phillips PJ, Semenov V, Gakh A (2003) J Appl Polym Sci 89:1163

    Article  CAS  Google Scholar 

  22. Li GF, Qin YS, Wang XH, Zhao XJ, Wang FS (2010) Acta Polym Sin 107

  23. Taylor MD, Carter CP, Wynter CI (1968) J Inorg Nucl Chem 30:1503

    Article  CAS  Google Scholar 

  24. Zhao XJ, Liu BY, Wang XH, CN1257753

  25. Quan ZL, Wang XH, Zhao XJ, Wang FS (2003) Polymer 44:5605

    Article  CAS  Google Scholar 

  26. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  27. Simha R, Wall LA (1952) Journal of Physical Chemistry 56:707

    Article  CAS  Google Scholar 

  28. Doyle CD (1961) J Appl Polym Sci 5:285

    Article  CAS  Google Scholar 

  29. Doyle CD (1962) J Appl Polym Sci 6:639

    Article  CAS  Google Scholar 

  30. Reich L (1964) J Polym Sci Part B: Polym Lett 2:621

    Article  Google Scholar 

  31. Ozawa T (1965) Bull Chem Soc Jpn 38:1881

    Article  CAS  Google Scholar 

  32. Flynn JH, Wall LA (1966) J Polym Sci Part B: Polym Lett 4:323

    Article  CAS  Google Scholar 

  33. Flynn JH, Wall LA (1966) J Res Nat Bur Stand Sect A Phys Chem A 70:487

    CAS  Google Scholar 

  34. Ichihara S, Nakagawa H, Tsukazawa Y (1994) Kobunshi Ronbunshu 51:459

    CAS  Google Scholar 

  35. Noda M, Okuyama H (1999) Chem Pharm Bull 47:467

    CAS  Google Scholar 

  36. Kim KJ, Doi Y, Abe H (2008) Polym Degrad Stabil 93:776

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Natural Science Foundation of China (Grant No. 20634040) was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Qin, Y., Wang, X. et al. Study on the influence of metal residue on thermal degradation of poly(cyclohexene carbonate). J Polym Res 18, 1177–1183 (2011). https://doi.org/10.1007/s10965-010-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9521-2

Keywords

Navigation