Skip to main content
Log in

Effects of carbon nanofibers on the crystallization kinetics of polyethylene oxide

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) was used to investigate the crystallization behavior of polyethylene oxide (PEO) and carbon nanofiber (CNF) filled PEO systems under non-isothermal experimental conditions. The dispersion and distribution of CNF of the composites were studied using scanning electron microscopy. Studies showed the uniform segregation of CNFs in PEO. Different crystallization kinetic models were used to study the dependence of crystal nucleation on the filler content. Modified Avrami analysis showed that PEO undergoes change of crystallization from 3-D to 1-D crystal while going from primary to secondary crystallization. The crystallization kinetic of PEO reversed at CNF loading higher than 1 wt% of PEO. Based on modified Avrami and the combined approach of Avrami and Ozawa, it is concluded that the CNF retards the crystallization of PEO at all CNF loading under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heilmann A (2002) Polymer films with embedded metal nanoparticles; Springer Series in Materials Science. Springer-Verlag, Berlin, p 52

    Google Scholar 

  2. Strano MS (2006) Nat Mater 5:433–434

    Article  CAS  Google Scholar 

  3. Manias E (2007) Nat Mater 6:9–11

    Article  CAS  Google Scholar 

  4. Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ (2006) Sens Actuators, B 115:678–684

    Article  Google Scholar 

  5. Lozano K, Yang S, Jones RE (2004) Carbon 42:2329–2331

    Article  CAS  Google Scholar 

  6. Santiago-Avile’s J, Yu-Wang Y (2003) Carbon 41:2665–2667

    Article  Google Scholar 

  7. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) Comp Sci Tech 67:1709–1718

    Article  CAS  Google Scholar 

  8. Sui G, Jana S, Zhong WH, Fuqua MA, Ulven CA (2008) Acta Mater 56:2381–2388

    Article  CAS  Google Scholar 

  9. Chatterjee A, Deopura BL (2006) J Appl Polym Sci 100:3574–3578

    Article  CAS  Google Scholar 

  10. Yang S, Benitez R, Fuentes R, Lozano K (2007) Comp Sci Tech 67:1159–1166

    Article  CAS  Google Scholar 

  11. MacCallum JR, Vicent CA (1987) Polymer electrolyte reviews. Elsevier, London

    Google Scholar 

  12. Harris JM (1992) Poly(ethylene glycol) chemistry: biotechnical and biomedical application. Plenum Press, New York

    Google Scholar 

  13. Dhawan S, Dhawan K, Varma M, Sinha VR (2005) Pharm Tech 29:82–96

    CAS  Google Scholar 

  14. Maggi L, Segale L, Torre ML, Machiste EO, Conte U (2002) Biomaterials 23:1113–1119

    Article  CAS  Google Scholar 

  15. Yang BX, Shi JH, Pramoda KP, Goh SH (2007) Nanotechnology 18:125606–125612

    Article  Google Scholar 

  16. Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Polymer 47:4068–4074

    Article  CAS  Google Scholar 

  17. Hammami A, Spruiell JE, Mehrotra AK (1995) Polym Eng Sci 35:797–04

    Article  CAS  Google Scholar 

  18. Liu X, Wu Q (2002) Eur Polym J 38:1383–1389

    Article  CAS  Google Scholar 

  19. Ozawa T (1971) Polymer 12:150–158

    Article  CAS  Google Scholar 

  20. Avrami MJ (1939) J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  21. Avrami MJ (1941) J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  22. Jeziorny A (1978) Polymer 19:1142–1145

    Article  CAS  Google Scholar 

  23. Bicerano J (1998) J Macromol Sci — Rev Macromol Chem Phys 38:391–480

    Google Scholar 

  24. Hussein IA (2008) J Appl Polym Sci 107:2802–2809

    Article  CAS  Google Scholar 

  25. Grozdanov A, Buzarovska A, Bogoeva-Gaceva G, Avella M, Errico ME, Gentile G (2007) Polym Eng Sci 47:745–749

    Article  CAS  Google Scholar 

  26. Liu T, Mo Z, Zhang H (1998) J Appl Polym Sci 67:815–821

    Article  CAS  Google Scholar 

  27. Liu T, Mo Z, Wang S, Zhang H (1997) Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge support received from National Science Foundation under PREM grant No. DMR 0934157 and grant No. DMR 0606224. The authors also gratefully acknowledge Pat Brown and Dr. Jeremy Qualls for their SEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta Adhikari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikari, A., Lozano, K. Effects of carbon nanofibers on the crystallization kinetics of polyethylene oxide. J Polym Res 18, 875–880 (2011). https://doi.org/10.1007/s10965-010-9484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9484-3

Keywords

Navigation