Skip to main content
Log in

The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main objective of the present study is to investigate the effect of diameter on thermal properties of phase change fibers at nanoscale in order to develop a shape-stabilized phase change material (PCM). In this regard, polyethylene glycol/cellulose acetate (PEG/CA) electrospun nanofibers as a model of PCM/polymer structure were electrospun. The electrospinning process was optimized using response surface methodology (RSM) to produce phase change nanofibers (PCNs) with achievable minimum and maximum diameter at nanoscale range. Therefore, PCNs with minimum and maximum diameter (223 nm and 545 nm, respectively) were successfully prepared. According to differential scanning calorimetry (DSC) results, the PCNs sample with maximum diameter exhibited higher efficiency of enthalpy (49.41 %) than the PCNs sample with minimum diameter (46.24 %). On the other hand, a test based on the T-history method revealed that PCNs with maximum diameter enjoy higher thermal insulation effect. Scanning electron microscopy (SEM) as well as DSC results showed that the PCNs samples exposed to thermal cycling test not only preserved their structural durability, but also exhibited about twofold increasing in the efficiency of enthalpy than the non-exposed samples. According to thermogravimetric analysis (TG) results, due to successful entrapping, a fraction of PCMs within the structure of polymer matrix, PCNs sample display greater thermal stability comparing to the pure PCM. The present work emphasises that at nanoscale range, higher diameter of PCNs can present more favorable thermal behavior; suggesting a great potential for advanced applications of thermal energy storage and thermal regulating materials fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PCM:

Phase change material

PCNs:

Phase change nanofibers

PCUFs:

Phase change ultrafine fibers

RSM:

Response surface methodology

TES:

Thermal energy storage

BBD:

Box-Behnken design

DS:

Degree of substitution

EPS:

Expanded polystyrene

MR:

Mass ratio

ANOVA:

Analysis of variance

H m(exp) :

Experimental value for heat of fusion

H m(the) :

Theoretical value for heat of fusion

Mn:

Number average molar mass

R 2 :

Correlation coefficient

V h :

Heating rate

T c :

Crystallization temperature

T m :

Melting temperature

H m :

Enthalpy of melting

H c :

Enthalpy of crystallization

T onset :

Onset mass loss temperature

References

  1. Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev. 2009;13:2225–44.

    Article  CAS  Google Scholar 

  2. Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  3. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  4. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  5. Nguyen TTT, Lee JG, Park JS. Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (Core/Sheath) composite non-woven mats. Macromol Res. 2011;19:370–8.

    Article  CAS  Google Scholar 

  6. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

    Article  CAS  Google Scholar 

  7. Mondal S. Phase change materials for smart textiles–an overview. Appl Therm Eng. 2008;28:1536–50.

    Article  CAS  Google Scholar 

  8. Karaman S, Karaipekli A, Sarı A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:1647–53.

    Article  CAS  Google Scholar 

  9. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev. 2011;15:1373–91.

    Article  CAS  Google Scholar 

  10. Chen C, Wang L, Huang Y. A novel shape-stabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite. Mater Lett. 2008;62:3515–7.

    Article  CAS  Google Scholar 

  11. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  Google Scholar 

  12. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  13. Chen C, Wang L, Huang Y. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Sol Energy Mater Sol Cells. 2008;92:1382–7.

    Article  CAS  Google Scholar 

  14. McCann JT, Marquez M, Xia Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett. 2006;6:2868–72.

    Article  CAS  Google Scholar 

  15. Chen C, Wang L, Huang Y. Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials. Chem Eng J. 2009;150:269–74.

    Article  CAS  Google Scholar 

  16. Chen C, Wang L, Huang Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer. 2007;48:5202–7.

    Article  CAS  Google Scholar 

  17. Cai Y, Ke H, Dong J, Wei Q, Lin J, Zhao Y, et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Appl Energy. 2011;88:2106–12.

    Article  CAS  Google Scholar 

  18. Ke H, Li D, Wang X, Wang H, Cai Y, Xu Y. Thermal and mechanical properties of nanofibers-based form-stable PCMs consisting of glycerol monostearate and polyethylene terephthalate. J Therm Anal Calorim. 2013;114(1):101–11.

    Article  CAS  Google Scholar 

  19. Chen C, Wang L, Huang Y. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy. 2011;88:3133–9.

    Article  CAS  Google Scholar 

  20. Chen C, Liu S, Liu W, Zhao Y, Lu Y. Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers. Sol Energy Mater Sol Cells. 2012;96:202–9.

    Article  CAS  Google Scholar 

  21. Cai Y, Zong X, Zhang J, Hu Y, Wei Q, He G, et al. Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Sol Energy Mater Sol Cells. 2013;109:160–8.

    Article  CAS  Google Scholar 

  22. Coles SR, Jacobs DK, Meredith JO, Barker G, Clark AJ, Kirwan K, et al. A design of experiments (DoE) approach to material properties optimization of electrospun nanofibers. J Appl Polym Sci. 2010;117:2251–7.

    Article  CAS  Google Scholar 

  23. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76:965–77.

    Article  CAS  Google Scholar 

  24. Yinping Z, Yi J. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas Sci Technol. 1999;10:201.

    Article  CAS  Google Scholar 

  25. Vitchuli N, Shi Q, Nowak J, Nawalakhe R, Sieber M, Bourham M, et al. Plasma-electrospinning hybrid process and plasma pretreatment to improve adhesive properties of nanofibers on fabric surface. Plasma Chem Plasma Process. 2012;32:275–91.

    Article  CAS  Google Scholar 

  26. Chen J-P, Ho K-H, Chiang Y-P, Wu K-W. Fabrication of electrospun poly (methyl methacrylate) nanofibrous membranes by statistical approach for application in enzyme immobilization. J Membr Sci. 2009;340:9–15.

    Article  CAS  Google Scholar 

  27. Mu G, Luan F, Liu H, Gao Y. Use of experimental design and artificial neural network in optimization of capillary electrophoresis for the determination of nicotinic acid and nicotinamide in food compared with high-performance liquid chromatography. Food Anal Methods. 2013;6:191–200.

    Article  Google Scholar 

  28. Andrady AL. Science and technology of polymer nanofibers. Hoboken: Wiley; 2008.

    Book  Google Scholar 

  29. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed. 2007;46:5670–703.

    Article  CAS  Google Scholar 

  30. Cho K, Li F, Choi J. Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer. 1999;40:1719–29.

    Article  CAS  Google Scholar 

  31. Martuscelli E. Influence of composition, crystallization conditions and melt phase structure on solid morphology, kinetics of crystallization and thermal behavior of binary polymer/polymer blends. Polym Eng Sci. 1984;24:563–86.

    Article  CAS  Google Scholar 

  32. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci. 1996;117:1–31.

    Article  Google Scholar 

  33. Morrow NR. Physics and thermodynamics of capillary action in porous media. Ind Eng Chem. 1970;62:32–56.

    Article  CAS  Google Scholar 

  34. Han S, Kim C, Kwon D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer. 1997;38:317–23.

    Article  CAS  Google Scholar 

  35. Kong Y, Hay J. The measurement of the crystallinity of polymers by DSC. Polymer. 2002;43:3873–8.

    Article  CAS  Google Scholar 

  36. Mandžuka Z, Knez Ž. Influence of temperature and pressure during PGSS™ micronization and storage time on degree of crystallinity and crystal forms of monostearate and tristearate. J Supercrit Fluids. 2008;45:102–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mousavi Shoushtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, B., Askari, M., Shoushtari, A.M. et al. The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs). J Therm Anal Calorim 118, 1619–1629 (2014). https://doi.org/10.1007/s10973-014-4025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4025-7

Keywords

Navigation