Skip to main content
Log in

Preparation and characterization of photopolymerizable organic–inorganic hybrid materials by the sol-gel method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of UV-curable organic–inorganic hybrid materials were prepared by the sol-gel technique and coated onto Plexiglass® substrate. The effects of the content of EGDMA and the content of the inorganic part on various properties of the coatings, such as tensile strength, hardness, gloss, and cross-cut adhesion, were investigated. It was found that the properties of the coating were improved by the addition of an inorganic part. The thermal properties of the hybrids were enhanced by incorporating silane sol into the organic part. Furthermore, it was found that the coating containing silica had a higher char content at 800 °C than the coating without silica. SEM studies indicated that nanosized (about 50 nm) silica particles were evenly dispersed throughout the organic matrix. A photo-DSC investigation showed that the organic coating polymerized more quickly than the hybrid coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amerio E, Sangermano M, Malucelli A, Priola A, Voit B (2005) Polymer (Guildf) 46:11241–11246. doi:10.1016/j.polymer.2005.09.062

    Article  CAS  Google Scholar 

  2. Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15:3559–3592. doi:10.1039/b509097k

    Article  CAS  Google Scholar 

  3. Judeinstein P, Sanchez C (1996) J Mater Chem 6:511–525

    Google Scholar 

  4. Wen J, Wilkes G (1996) Chem Mater 8:1667–1681. doi:10.1021/cm9601143

    Article  CAS  Google Scholar 

  5. Chiang C-L, Ma C-CM, Wang F-Y, Kuan H-C (2003) Eur Polym J 39:825–830. doi:10.1016/S0014-3057(02)00283-5

    Article  CAS  Google Scholar 

  6. Soppera O, Croutxē-Barghorn C, Carrē C, Blanc D (2002) Appl Surf Sci 186:91–99. doi:10.1016/S0169-4332(01)00618-3

    Article  CAS  Google Scholar 

  7. Ogoshi T, Chujo Y (2005) Compos Interfaces 11:539–566. doi:10.1163/1568554053148735

    Article  CAS  Google Scholar 

  8. Ajayan PM, Schadler LS, Braua PV (2003) Nanocomposite science and technology. Wiley, New York, p 112

  9. Wu C-S (2005) J Polym Sci Part A Polym Chem 43:1690–1701. doi:10.1002/pola.20649

    Google Scholar 

  10. Zong Z, He J, Soucek MD (2005) Prog Org Coat 53:83–90. doi:10.1016/j.porgcoat.2004.08.008

    Article  CAS  Google Scholar 

  11. Huang S-L, Chin W-K, Yang WP (2005) Polymer (Guildf) 46:1865–1877. doi:10.1016/j.polymer.2004.12.052

    Article  CAS  Google Scholar 

  12. Wouters MEL, Wolfs DP, Van Der Linde MC, Hovens JHP, Tinnemans AHA (2004) Prog Org Coat 51:312–320. doi:10.1016/j.porgcoat.2004.07.020

    Article  CAS  Google Scholar 

  13. Karataş S, Kızılkaya C, Kayaman-Apohan N, Güngör A (2007) Prog Org Coat 60:140–147. doi:10.1016/j.porgcoat.2007.07.010

    Article  Google Scholar 

  14. Chou Y-C, Wang Y, Hsieh E (2007) J Appl Polym Sci 105:2073–2082. doi:10.1002/app. 26228

    Article  CAS  Google Scholar 

  15. Schottner G (2001) Chem Mater 13:3422–3435. doi:10.1021/cm011060m

    Article  CAS  Google Scholar 

  16. Dworak D, Soucek MD (2006) Macromolecules 207:1220–1232

    CAS  Google Scholar 

  17. Karataş S, Hoşgör Z, Kayaman-Apohan N, Güngör A (2009) Prog Org Coat (in press)

  18. Wei Y, Wang W, Yeh J-M, Wang B, Yang D, Murray JK Jr (1994) Adv Mater 6:372. doi:10.1002/adma.19940060505

    Article  CAS  Google Scholar 

  19. Wei Y, Wang W, Yeh J-M, Wang B, Yang D, Murray JK Jr (1994) Polym Mater Sci Eng 70:272

    Google Scholar 

  20. Wei Y, Wang W, Yeh J-M, Wang B (1995) Polymers for the 21st century. Peking University, Beijing, p 108

  21. Zhang L, Zeng Z, Yang J, Chen Y (2003) J Appl Polym Chem 87:1654–1659. doi:10.1002/app. 11557

    Article  CAS  Google Scholar 

  22. Bosch P, Del Monte F, Mateo JL, Levy D (1996) J Polym Sci Part A Polym Chem 34:3289–3296

    Google Scholar 

  23. Zou J, Zhao Y, Shi W, Shen X, Nie K (2005) Polym Adv Tech 16:55–60. doi:10.1002/pat.543

    Article  CAS  Google Scholar 

  24. Bauer F, Flayunt R, Czihal K, Langguth H, Mehnert R, Schubert R, Buchmeiser MR (2007) Prog Org Coat 60:121–128. doi:10.1016/j.porgcoat.2007.07.005

    Article  CAS  Google Scholar 

  25. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic, New York

  26. Kayaman-Apohan N, Karataş S, Bilen B, Güngör A (2008) J Sol-Gel Sci Technol 46:87–97. doi:10.1007/s10971-008-1709-0

    Article  Google Scholar 

  27. Wu S, Sears MT, Soucek MD (1999) Prog Org Coat 36:89–101. doi:10.1016/S0300-9440(99)00020-X

    Article  CAS  Google Scholar 

  28. Tasic S, Bozic B, Dunjic B (2004) Prog Org Coat 51:321–328. doi:10.1016/j.porgcoat.2004.07.021

    Article  CAS  Google Scholar 

  29. Zong Z, He J, Soucek MD (2005) Prog Org Coat 53:83–90. doi:10.1016/j.porgcoat.2004.08.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by TUBITAK TBAG Project No: 106T083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Güngör.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karataş, S., Hoşgör, Z., Apohan, NK. et al. Preparation and characterization of photopolymerizable organic–inorganic hybrid materials by the sol-gel method. J Polym Res 17, 247–254 (2010). https://doi.org/10.1007/s10965-009-9311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9311-x

Keywords

Navigation