Skip to main content
Log in

Preparation and characterization of biodegradable thermoplastic Elastomers (PLCA/PLGA blends)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A biodegradable elastomer (PLCA/PLGA blends) was prepared and characterized. First, poly(DL-lactide-co-ε-caprolactone) (PLCA) and poly(DL-lactide-co-glycolide) (PLGA) were synthesized. Infrared (IR) spectroscopy, 1H nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) were used to confirm the formation and structure of PLCA and PLGA. The solubility parameters of PLCA and PLGA were measured to estimate the miscibility between them. A series of PLCA/PLGA blends was prepared through solution blending. The morphology of all blends was examined by scanning electron microscope (SEM), and no obvious phase separation was detected at various ratios of PCLA and PLGA. Thermomechanical properties were characterized using thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA), the results showed that the PLCA/PLGA blends were a type of immiscible but compatible polymer blend. Mechanical properties, particularly stress-strain behavior, were examined; with an increase in PLGA content, the tensile strength and Young’s modulus of the blends increased dramatically, while elongation at break decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu DF, Zhang YS, Zhang M, Zhou WD (2008) Eur Polym J 44:2171. doi:10.1016/j.eurpolymj.2008.04.023

    Article  CAS  Google Scholar 

  2. Duan B, Yuan XY, Zhu Y, Zhang YY, Li XL, Zhang Y, Yao KD (2006) Eur Polym J 42:2013. doi:10.1016/j.eurpolymj.2006.04.021

    Article  CAS  Google Scholar 

  3. Benali S, Peeterbroeck S, Brocorens P, Monteverde F, Bonnaud L, Alexandre M, Lazzaroni R, Dubois P (2008) Eur Polym J 44:1673. doi:10.1016/j.eurpolymj.2008.03.020

    Article  CAS  Google Scholar 

  4. Bhattarai N, Bhattarai SR, Khil MS, Lee DR, Kim HY (2003) Eur Polym J 39:1603. doi:10.1016/S0014-3057(03)00057-0

    Article  CAS  Google Scholar 

  5. Ding CF, Wang Y, Zhang SS (2007) Eur Polym J 43:4244. doi:10.1016/j.eurpolymj.2007.07.032

    Article  CAS  Google Scholar 

  6. Cohn D, Salomon AH (2005) Biomaterials 26:2297. doi:10.1016/j.biomaterials.2004.07.052

    Article  CAS  Google Scholar 

  7. Wang M, Chen W, Zhang H, Li XL, Zhang Y, Yao KD, Yao FL (2007) Eur Polym 43:4683. doi:10.1016/j.eurpolymj.2007.08.012

    Article  CAS  Google Scholar 

  8. Garkhal K, Verma S, Jonnalagadda S, Kumar NJ (2007) Polym Sci Part A Polym Chem 45:2755. doi:10.1002/pola.22031

    Article  CAS  Google Scholar 

  9. Huang MH, Li S, Vert M (2004) Polymer (Guildf) 45:8675. doi:10.1016/j.polymer.2004.10.054

    Article  CAS  Google Scholar 

  10. Wang WS, Ping P, Yu HJ, Chen XS, Jing XB (2006) J Polym Sci Part Polym Chem 44:5505. doi:10.1002/pola.21643

    Article  CAS  Google Scholar 

  11. Rezgui F, Swistek M, Hiver JM, G’Sell C, Sadoun T (2005) Polymer 46:7370. doi:10.1016/j.polymer.2005.03.116

    Article  CAS  Google Scholar 

  12. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stabil 86:401. doi:10.1016/j.polymdegradstab.2004.04.026

    Article  CAS  Google Scholar 

  13. Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Biomaterials 24:1167. doi:10.1016/S0142-9612(02)00466-0

    Article  CAS  Google Scholar 

  14. Domb AJ (1993) J Polym Sci Part Polym Chem 31:1973. doi:10.1002/pola.1993.080310805

    Article  CAS  Google Scholar 

  15. Apohan NK, Akdemir ZS (2005) Polym Adv Technol 16:807. doi:10.1002/pat.656

    Article  Google Scholar 

  16. Jaczewska J, Raptis I, Budkowski A, Goustouridis D, Raczkowska J, Sanopoulou M, Pamula E, Bernasik A, Rysz J (2007) Synth Met 157:726. doi:10.1016/j.synthmet.2007.07.015

    Article  CAS  Google Scholar 

  17. Ravindra R, Krowidi KR, Khan AA (1998) Carbohydr Polym 36:121. doi:10.1016/S0144-8617(98)00020-4

    Article  CAS  Google Scholar 

  18. Schenderlein S, Luck M, Muller BW (2004) Int J Pharm 286:19. doi:10.1016/j.ijpharm.2004.07.034

    Article  CAS  Google Scholar 

  19. Roberts RJ, Rowe RC (1993) Int J Pharm 99:157. doi:10.1016/0378-5173(93)90357-L

    Article  CAS  Google Scholar 

  20. Adamska K, Voelkel A (2005) Int J Pharm 304:11. doi:10.1016/j.ijpharm.2005.03.040

    Article  CAS  Google Scholar 

  21. Robin HB, Liu JC, Chien YW (1988) Int J Pharm 42:199. doi:10.1016/0378-5173(88)90176-7

    Article  Google Scholar 

  22. Wu PX, Zhang LC (1996) Blends and modification of polymers. China Light Industry, Beijing

    Google Scholar 

  23. Utracki LA (1989) Polymer alloys and blends, thermodynamic and rheology. Hanser, Munich

    Google Scholar 

  24. Mark HF (2004) Encyclopedia of polymer science and technology. Wiley, New York

    Google Scholar 

  25. Averous L, Moro L, Dole P (2000) Polymer (Guildf) 41:4157. doi:10.1016/S0032-3861(99)00636-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the key sci-tech special projects and programs for prior topics from Science and Technology Department of Zhejiang Province, China (2008C11126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdong Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, Z., Chen, H. et al. Preparation and characterization of biodegradable thermoplastic Elastomers (PLCA/PLGA blends). J Polym Res 17, 77–82 (2010). https://doi.org/10.1007/s10965-009-9292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9292-9

Keywords

Navigation