Skip to main content
Log in

Photo- and bio-degradation of poly(ester-urethane)s films based on poly[(R)-3-Hydroxybutyrate] and poly(ε-Caprolactone) blocks

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable segmented poly(ester-urethane)s derived from telechelic dihydroxy-poly[(R)-3-hydroxybutyrate], acting as hard segments, and poly(ε-caprolactone)-diols, acting as soft segments, using 1,6-hexamethylene diisocyanate, as non toxic connecting agent, were synthesized. The copolymers were characterized with regard to their molecular weight by GPC and their main thermal transitions by DSC. These copolymers as well as PHB were exposed to UV-irradiation for different time intervals and the changes in the chemical structure were analyzed by FTIR spectroscopy. Under our experimental conditions, it was found that the increase of irradiation time was accompanied by increase of the proportion of the gel fraction and the decrease of the intrinsic viscosity of the soluble fraction of the investigated copolymers. The biodegradability of PHB and poly(ester-urethane) sample containing ~40 wt% PHB before and after UV-irradiation was investigated under soil burial. The results showed that the photolysis in air prior to biodegradation increased the rate of degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alber R, Lundgren DG, Marchessault RH, Cote WA (1963) Biopolymers 1:545. doi:10.1002/bip.360010605

    Article  Google Scholar 

  2. Lundgren DG, Alber R, Schnaitman C, Marchessault RH (1965) J Bacteriol 89:245. doi:10.1002/path.1700890125

    Article  CAS  Google Scholar 

  3. Doi Y (1990) Microbial Polyesters. VCH Publishers, New York

    Google Scholar 

  4. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450

    CAS  Google Scholar 

  5. Sasikala C, Ramana CV (1996) Adv Appl Microbiol 42:97. doi:10.1016/S0065-2164(08)70373-3

    Article  CAS  Google Scholar 

  6. Suriyamongkol P, Weselake P, Narine S, Moloney M, Shah S (2007) Biotechnol Adv 25:148. doi:10.1016/j.biotechadv.2006.11.007

    Article  CAS  Google Scholar 

  7. Pijuan M, Casas C, Baeza JA (2009) Process Biochem 44:97. doi:10.1016/j.procbio.2008.09.017

    Article  CAS  Google Scholar 

  8. Verhoogt H, Ramsay BA, Favis BD (1994) Polymer (Guildf) 35:515. doi:10.1016/0032-3861(94)90465-0

    Google Scholar 

  9. Savenkova L, Gercberga Z, Nikolaeva V (2000) Process Biochem 35:573. doi:10.1016/S0032-9592(99)00107-7

    Article  CAS  Google Scholar 

  10. Grassie N, Murray EJ, Holmes PA (1984) Polym Degrad Stabil 6:48. doi:10.1016/0141-3910(84)90075-2

    Google Scholar 

  11. Grassie N, Murray EJ, Holmes PA (1984) Polym Degrad Stabil 6:95. doi:10.1016/0141-3910(84)90075-2

    Article  CAS  Google Scholar 

  12. Gonzalez A, Irusta L, Ferna’ndez-Berridi MJ, Iriarte M, Iruin JJ (2005) Polym Degrad Stabil 87:347. doi:10.1016/j.polymdegradstab.2004.09.005

    Article  CAS  Google Scholar 

  13. Loo CY, Sudesh K (2007) Int J Biol Macromol 40:466. doi:10.1016/j.ijbiomac.2006.11.003

    Article  CAS  Google Scholar 

  14. Trotsenko YA, Belova LL (2000) Microbiol 69:635. doi:10.1023/A:1026641821583

    Article  CAS  Google Scholar 

  15. Choi MH, Lee HJ, Rho JK (2003) Biomacromolecules 4:38. doi:10.1021/bm025596s

    Article  CAS  Google Scholar 

  16. Saito Y, Doi Y (1994) Int J Biol Macromol 16:99. doi:10.1016/0141-8130(94)90022-1

    Article  CAS  Google Scholar 

  17. SU F, Iwata T, Tanaka F, Doi Y (2003) Macromolecules 36:6401. doi:10.1021/ma034546s

    Article  CAS  Google Scholar 

  18. Tsuge T, Kikkawa Y, Doi Y (2004) Sci Technol Adv Mater 5:449. doi:10.1016/j.stam.2004.01.013

    Article  CAS  Google Scholar 

  19. Tsuge T, Saito Y, Kikkawa Y (2004) Macromol Biosci 4:238–242. doi:10.1002/mabi.200300077

    Article  CAS  Google Scholar 

  20. Ha C, Cho W (2002) Prog Polym Sci 27:759. doi:10.1016/S0079-6700(01)00050-8

    Article  CAS  Google Scholar 

  21. Reeve MS, McCarthy SP, Gross RA (1993) Macromolecules 26:888. doi:10.1021/ma00057a002

    Article  CAS  Google Scholar 

  22. Hirt TD, Neuenschwander P, Suter UW (1996) Macromol Chem Phys 197:4253. doi:10.1002/macp.1996.021971221

    Article  CAS  Google Scholar 

  23. Lendlein A, Neuenschwander P, Suter UW (1998) Macromol Chem Phys 199:2785. doi:10.1002/(SICI)1521-3935(19981201) 199:12<2785::AID-MACP2785>3.0.CO;2-X

    Article  CAS  Google Scholar 

  24. Saad GR, Lee YJ, Seliger H (2002) J Appl Polym Sci 83:703. doi:10.1002/app.2265

    Article  CAS  Google Scholar 

  25. Impallomen G, Giuffrida M, Barbuzzi T, Musumarra G, Ballisteri A (2002) Biomacromolecules 3:835. doi:10.1021/bm025525t

    Article  Google Scholar 

  26. Saad GR (2001) Macromol Biosci 1:387. doi:10.1002/1616-5195(20011201) 1:9<387::AID-MABI387>3.0.CO;2-4

    Article  CAS  Google Scholar 

  27. Saad GR, Seliger H (2004) Polym Degrad Stabil 83:101. doi:10.1016/S0141-3910(03)00230-1

    Article  CAS  Google Scholar 

  28. Hamid SH (2000) Handbook of Polymer Degradation. Marcel Dekker, New York

    Google Scholar 

  29. Feldman D (2002) J polym Envirom 10:163

    Article  CAS  Google Scholar 

  30. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Chemosphere 73:429–442. doi:10.1016/j.chemosphere.2008.06.064

    Article  CAS  Google Scholar 

  31. Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2000) J Polym Envirom 8:183. doi:10.1023/A:1015297727244

    Article  CAS  Google Scholar 

  32. Reeve MS, McCarthy SP, Gross RA (1990) Am Chem Soc Div Polym Sci 30:473

    Google Scholar 

  33. Barham P, Keller AJ, Otuun EL, Holmes PA (1984) J Mater Sci 19:2781. doi:10.1007/BF01026954

    Article  CAS  Google Scholar 

  34. Crescenzi V, Manzini G, Calzolari G, Borri C (1992) Eur Polym J 8:449. doi:10.1016/0014-3057(72)90109-7

    Article  Google Scholar 

  35. Wilhelm C, Gardette JL (1997) Polymer (Guildf) 38:4019. doi:10.1016/S0032-3861(96)00984-6

    Article  CAS  Google Scholar 

  36. Irusta L, Fernandez-Berridi MJ (1999) Polym Degrad Stabil 63:113. doi:10.1016/S0141-3910(98)00073-1

    Article  CAS  Google Scholar 

  37. Ikada E (1997) J Photopolym Sci Technol 10:265. doi:10.2494/photopolymer.10.265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal R. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, G.R., Khalil, T.M. & Sabaa, M.W. Photo- and bio-degradation of poly(ester-urethane)s films based on poly[(R)-3-Hydroxybutyrate] and poly(ε-Caprolactone) blocks. J Polym Res 17, 33–42 (2010). https://doi.org/10.1007/s10965-009-9287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9287-6

Keywords

Navigation