Skip to main content
Log in

Aromatic liquid transport through filled EPDM/NBR blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The sorption and diffusion characteristics of 70/30 ethylene propylene diene monomer rubber (EPDM)/acrylonitrile butadiene rubber (NBR) blends loaded with black fillers such as ISAF (intermediate super-abrasion furnace), HAF (high abrasion furnace) and SRF (semi-reinforcing furnace) have been investigated. The penetrants used were benzene, toluene and xylene. Filled samples have been found to show a reduced solvent uptake compared to the unfilled sample for the given blend ratio. The observations have been correlated with the morphology of the systems. Blends loaded with ISAF exhibited the lowest liquid uptake among black filled systems which has been attributed to the better filler reinforcement and enhanced crosslink density of the matrix. The extent of particulate filler reinforcement has been studied by using Kraus theory. The unfilled and filled systems have been found to exhibit non-Fickian transport behaviour. The effect of fillers on the cure and mechanical properties of the blends have also been investigated. Among the black filler loaded systems used, the ISAF mix showed the highest maximum torque value. The improvement in the cure and mechanical properties has been observed to be the highest for ISAF filled samples followed by HAF and SRF filled systems, which is in compliance with the observation from the sorption studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hargoppad SB, Aminabhavi TM (1991) J Appl Polym Sci 42:2329. doi:10.1002/app. 1991.070420824

    Article  Google Scholar 

  2. Barrer RM, Skirrow G (1948) J Polym Sci 3:549. doi:10.1002/pol.1948.120030410

    Article  CAS  Google Scholar 

  3. Salomon G, Van Amerongen GJ (1948) Rubber Chem Technol 21:66

    CAS  Google Scholar 

  4. Ramesan MT (2004) J Polym Res 11:333. doi:10.1007/s10965-005-6571-y

    Article  CAS  Google Scholar 

  5. Stadeker S, Novak Z, Knez Z (2007) J Colloid Interface Sci 310:362. doi:10.1016/j.jcis.2007.02.021

    Article  CAS  Google Scholar 

  6. De D, Das A, De D, Panda PK, Dey B, Roy BC (2006) J Appl Polym Sci 99:957. doi:10.1002/app.22379

    Article  CAS  Google Scholar 

  7. Choi SS (2004) J Appl Polym Sci 93:1001. doi:10.1002/app. 20567

    Article  CAS  Google Scholar 

  8. Crank J, Park GS (1968) Diffusion in polymers. Academic, NewYork

    Google Scholar 

  9. Ranimol S, Varghese S, Joseph K, Oommen Z, Thomas S (2006) J Membr Sci 282:162. doi:10.1016/j.memsci.2006.05.019

    Article  CAS  Google Scholar 

  10. Ranimol S, Joseph K, Oommen Z, Thomas S (2007) Combust Sci Technol 67:1187

    Google Scholar 

  11. Park SJ, Kirm JS (2000) J Colloid Interface Sci 232:311. doi:10.1006/jcis.2000.7160

    Article  CAS  Google Scholar 

  12. Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilization. Chapman and Hall, Chichester

    Google Scholar 

  13. Cezary D, Jacek M, Dariusz D (2006) Polymer (Guildf) 51:58

    Google Scholar 

  14. Sombatsompop N, Kumnuantip C (2006) J Appl Polym Sci 100:5039. doi:10.1002/app. 23472

    Article  CAS  Google Scholar 

  15. Narkis M, Srivastava S, Tchoudakov R, Breuer O (2001) Synth Met 113:29. doi:10.1016/S0379-6779(00)00187-9

    Article  Google Scholar 

  16. Nasr GM, Gomma AS (1995) Polym Degrad Stabil 50:249. doi:10.1016/0141-3910(95)00168-9

    Article  CAS  Google Scholar 

  17. Kumnuantip C, Sombatsompop N (2003) Mater Lett 57:3167. doi:10.1016/S0167-577X(03)00019-3

    Article  CAS  Google Scholar 

  18. Mathai S, Thomas S (1996) J Macromol Sci Phys B 35:229. doi:10.1080/00222349608212383

    Article  Google Scholar 

  19. Sujith A, Unnikrishnan G (2005) J Mater Sci 40:4625. doi:10.1007/s10853-005-0904-4

    Article  CAS  Google Scholar 

  20. Cotton GR (1969) Kautsch Gummi Kunstst 22:477

    Google Scholar 

  21. Wang MJ (1998) Rubber Chem Technol 71:520

    CAS  Google Scholar 

  22. Billmeyer FW Jr (1994) Text book of polymer science, 3rd edn. Wiley Interscience, Singapore

    Google Scholar 

  23. Schroeder A, Kluppel M, Schuster RH (1999) Kautsch Gummi Kunstst 52:814

    Google Scholar 

  24. Blow CM, Hepburn C (1981) Rubber technology and manufacture, 2nd edn. Butterworths, London

    Google Scholar 

  25. Unnikrishnan G, Thomas S (1994) Polymer (Guildf) 35:5504. doi:10.1016/S0032-3861(05)80015-1

    Article  CAS  Google Scholar 

  26. Kraus G (1957) J Appl Polym Sci 30:928

    Google Scholar 

  27. Kraus G (1964) Rubber Chem Technol 37:6

    Google Scholar 

  28. Kraus G (1963) J Appl Polym Sci 7:861. doi:10.1002/app.1963.070070306

    Article  CAS  Google Scholar 

  29. Fujitha H, Kishimoto A (1958) J Appl Polym Sci 25:547

    Google Scholar 

  30. Flory PJ, Rehner J (1943) J Chem Phys 11:521. doi:10.1063/1.1723792

    Article  CAS  Google Scholar 

  31. Wypych G (2000) Hand book of fillers, 2nd edn. New York, Toronto

    Google Scholar 

  32. Bristow GM, Watson WF (1958) Trans Faraday Soc 54:1731. doi:10.1039/tf9585401731

    Article  CAS  Google Scholar 

  33. Mark JE, Erman B (1988) Rubber like elasticity, a molecular primer. Wiley Interscience, New York

    Google Scholar 

  34. Harogoppad SB, Aminabhavi TM, Balundgi RH (1991) J Appl Polym Sci 42:1297. doi:10.1002/app.1991.070420513

    Article  CAS  Google Scholar 

  35. Brown WR, Jenkins RB, Park GS (1973) J Polym Sci Symp 41:45

    Article  Google Scholar 

  36. Harogoppad SB, Aminabhavi TM (1991) Macromolecules 24:2598. doi:10.1021/ma00009a070

    Article  CAS  Google Scholar 

  37. Cassidy PE, Aminabhavi TM, Thompson CM (1983) Rubber Chem Technol 56:594

    CAS  Google Scholar 

  38. Lawandy SN, Wassef MT (1990) J Appl Polym Sci 40:313. doi:10.1002/app.1990.070400302

    Article  Google Scholar 

  39. Franson M, Pappas NA (1983) J Appl Polym Sci 28:1299. doi:10.1002/app.1983.070280404

    Article  CAS  Google Scholar 

  40. Kim D, Caruthers JM, Peppas NA (1993) Macromolecules 26:1841. doi:10.1021/ma00060a008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Unnikrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoj, K.C., Kumari, P., Rajesh, C. et al. Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17, 1–9 (2010). https://doi.org/10.1007/s10965-009-9283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9283-x

Keywords

Navigation