Skip to main content
Log in

Mechanical and sorption properties of poly(ethylene-co-vinyl acetate)(EVA) compatibilized acrylonitrile butadiene rubber/natural rubber blend systems

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly (ethylene-co-vinyl acetate) (EVA) has been used as a compatibilizer for heterogeneous natural rubber/acrylonitrile butadiene rubber (NR/NBR) blends. NR/NBR (50/50) blends were compatibilized with varying amounts, from 0 to 10 parts per hundred rubber (phr), of EVA. The compatibility of the blend components in presence of EVA has been evaluated in terms of mechanical and sorption characteristics. The mechanical properties were found to be improved by the addition of EVA upto 6 phr. The solvent resistance of the compatibilized samples has been observed to be higher compared to the uncompatibilized blends; attributed to the increased interfacial adhesion between the blend components. DSC studies showed a shift of glass transition temperatures of the blend components towards higher temperatures indicating increased rigidity of the matrix in presence of EVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

T g :

glass transition temperature

M 90 :

90% of maximum torque

M 2 :

Scorch time torque

t 90 :

time required to achieve 90% of the maximum torque (optimum cure time)

T 2 :

Scorch time

R H :

cure rate

Q t :

moles of solvent sorbed by 0.1 kg of polymer blend at time ‘t

ν :

degree of crosslinks

ρ p :

density of the polymer blend

V s :

molar volume of the solvent

V r :

volume fraction of blend in the fully swollen state

χ :

polymer-solvent interaction parameter

M c :

molar mass between crosslinks (g/mol)

D :

diffusion coefficient

θ :

Slope of the initial portion of plot of Q t versus \( {\sqrt t } \)

D* :

intrinsic diffusion coefficient

\( M_{\infty } \) :

mass of solvent uptake at equilibrium

M p :

initial polymer mass

θ p :

slope of the steady state linear portion of the Q t versus time relationship

\( {\ell } \) :

thickness of the membrane

A :

permeating area of the membrane

\( \overline{P} \) :

intrinsic permeability of the membrane

Θ:

Time lag

\( Q_{\infty } \) :

moles of solvent sorbed by 0.1 kg of polymer blend at equilibrium

T :

temperature

t :

time

h :

initial thickness of the sample

References

  1. Jiang W, Han S (2002) J Chem Ind Eng 53:285

    CAS  Google Scholar 

  2. Cunha VS, Paredes MLL, Borges CP, Habert AC, Nobrega R (2002) J Membr Sci 206:277

    Article  CAS  Google Scholar 

  3. Tabtiang A, Venables RA (2002) Polymer 43:4791

    Article  CAS  Google Scholar 

  4. Restos H, Margiolaki I, Messaritaki A, Anastasiadis SH (2001) Macromolecules 34:5295

    Article  CAS  Google Scholar 

  5. Paul DR, Barlow GW (1979) Adv Chem Ser 176:315

    Article  CAS  Google Scholar 

  6. Majumdar B, Keskkula H, Paul DR (1994) Polymer 35:5453

    Article  CAS  Google Scholar 

  7. Mounir A, Darwish NA, Shehata A (2004) Polym Adv Technol 15:209

    Article  CAS  Google Scholar 

  8. Fayt R, Teyssie P (1990) Polym Eng Sci 30:937

    Article  CAS  Google Scholar 

  9. Cassu SN, Felisberti MI (2002) J Appl Polym Sci 83:830

    Article  CAS  Google Scholar 

  10. Jose S, Thomas S, Lievana E, Karger-Kocsis J (2005) J Appl Polym Sci 95:1376

    Article  CAS  Google Scholar 

  11. Kiatkamjornwong S, Nakason C, Nuansomsri K, Kaesaman A (2006) Polym Test 25:782

    Article  CAS  Google Scholar 

  12. Ismail H, Hairunezam HN (2001) Eur Polym J 37:39

    Article  CAS  Google Scholar 

  13. Oliveira MG, Soares BG (2003) J Appl Polym Sci 90:2408

    Article  CAS  Google Scholar 

  14. George SC, Ninan KN, Geuskens G, Thomas S (2004) J Appl Polym Sci 91:3756

    Article  CAS  Google Scholar 

  15. Yeh JT, Fan-Chiang CC, Yang SS (1997) J Appl Polym Sci 64:1531

    Article  CAS  Google Scholar 

  16. Nunez RG, Padilla H, DeKee D, Favis BD (2001) Polym Bull 46:323

    Article  Google Scholar 

  17. Harogoppad S, Aminabhavi TM (1991) J Appl Polym Sci 42:2329

    Article  CAS  Google Scholar 

  18. Kumnuantip C, Sombatsompop N (2003) Mater Lett 57:3167

    Article  CAS  Google Scholar 

  19. Aminabhavi TM, Phayde HTS, Ortego JD, Rudzinski WE (1996) J Hazard Mater 49:125

    Article  CAS  Google Scholar 

  20. Sujith A, Unnikrishnan G (2006) J Polym Res 13:171

    Article  CAS  Google Scholar 

  21. Habeeb Rahiman K, Unnikrishnan G (2006) J Polym Res 13:297

    Article  CAS  Google Scholar 

  22. Gailard P, Ossenbach-sauter M, Riess G (1980) Makromol Chem, Rapid commn 1:771

    Article  Google Scholar 

  23. Nakamura K, Endo R, Takada M (1976) J Polym Sci Polym Phys Ed 14:1287

    Article  CAS  Google Scholar 

  24. Ramesan MT, Mathew G, Kuriakose B, Alex R (2001) Eur Polym J 37:719

    Article  CAS  Google Scholar 

  25. Spiros HA, Irena G, Koberstein JT (1989) Macromolecules 22:1449

    Article  Google Scholar 

  26. Fayt R, Jerome R, Teyssie P (1986) Macromol Chem 187:837

    Article  CAS  Google Scholar 

  27. Thomas S, Praud’homme RE (1992) Polymer 33:4260

    Article  CAS  Google Scholar 

  28. Mark JE, Erman B (1988). Rubber like elasticity – a molecular approach. Wiley, New York

    Google Scholar 

  29. Flory PJ, Rehner J Jr (1943) J Chem Phys 11:521

    Article  CAS  Google Scholar 

  30. Brown WR, Jenkins RB, Park GS (1973) J Appl Polym Sci Polym Symp 41:45

    Article  Google Scholar 

  31. George SC, Ninan KN, Gabriel G, Thomas S (2000) J Appl Polym Sci 78:1280

    Article  CAS  Google Scholar 

  32. Harogoppad SB, Aminabhavi TM (1991) J Appl Polym Sci 42:2329

    Article  CAS  Google Scholar 

  33. Conklin JA, Su TM, Huang SC, Kaner RB (1997) In: Skothiem TA, Elsenbaumer RK, Reynolds JR (eds) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, p 945

    Google Scholar 

  34. Conklin JA, Kaner RB (1994) In: Bloor D, Brook RJ, Flemings MC, Mahajan S (eds) The encyclopedia of advanced materials. Elsevier, NewYork, p 1483

    Google Scholar 

  35. Heintz A, Funke H, Lichtenthaler RN (1991) In: Huang RYM (ed) Pervaporation membrane separation processes. Elsevier, Amsterdam

    Google Scholar 

  36. Franson NM, Peppas NA (1983) J Appl Polym Sci 28:1299

    Article  CAS  Google Scholar 

  37. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Unnikrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, P., Radhakrishnan, C.K., George, S. et al. Mechanical and sorption properties of poly(ethylene-co-vinyl acetate)(EVA) compatibilized acrylonitrile butadiene rubber/natural rubber blend systems. J Polym Res 15, 97–106 (2008). https://doi.org/10.1007/s10965-007-9148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9148-0

Keywords

Navigation