Skip to main content
Log in

Bioengineering functional copolymers: synthesis and characterization of poly(N-isopropyl acrylamide-co-3,4-2H-dihydropyran)s

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel bioengineering copolymers were synthesized by radical copolymerization of N-isopropylacrylamide (NIPA) and 3,4-2H-dihydropyran (DHP) with 2,2′-azobisisobutyronitrile as an initiator in acetone solution at 70 °C under nitrogen atmosphere. Structure, tacticity and compositons of the copolymers prepared in a wide range of monomer feed were confirmed by FTIR, 1H{13C} NMR-DEPT and elemental analyses. The monomer reactivity ratios (r 1 and r 2) were detected using known two methods: r 1 (NIPA) = 1.25 and r 2 = 0.035 (DHP), and r 1 (NIPA)  = 0.97 and r 2 = 0.022 (DHP) by Kelen-Tüdös and Jaacks methods, respectively. It was demonstrated that the studied monomer pair has a tendency to form H-bonding beween amide/ether groups through −NH...O< complexation which played an important role in the stereoselective chain growth, and significant decrease of allyl degradative chain transfer reactions. This phenomenon is also confirmed by the observed relatively high molecular weights of copolymers (M v ). The synthesized water-soluble stimuli-responsive poly(NIPA-co-DHP)s exhibit thermal stability, higher glass-transition temperature, polyelectrolyte, pH- and temperature-sensitive behavior and can be attributed to the class of bioengineering functional copolymers useful for various bio- and gene-engineering, and drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Fig. 8
Scheme 5

Similar content being viewed by others

References

  1. Rzaev ZMO (1985) Polymers and copolymers of maleic anhydride, Elm, Baku 1984. Chem Abstr 102:114108w

    Google Scholar 

  2. Cowie JGM (1985) Alternating copolymers. Plenum, New York

    Google Scholar 

  3. Butler GB (1992) Cyclopolymerization and cyclocopolymerization. Plenum, New York

    Google Scholar 

  4. Han MJ, Kim KH, Cho TJ, Choi KB (1990) J Polym Sci Part A: Polym Chem 28:2719

    Article  CAS  Google Scholar 

  5. Han MJ, Kim KS, Cho TJ, Kim KH, Chang JY (1994) Macromolecules 27:2896

    Article  CAS  Google Scholar 

  6. Han MJ, Cho NS, Cho TJ, Chang JY (1995) J Polym Sci Part A: Polym Chem 33:829

    Article  Google Scholar 

  7. Koseli V, Rzaev ZMO, Pişkin E (2003) J Polym Sci Part A: Polym Chem 41:1580

    Article  CAS  Google Scholar 

  8. Kesim H, Rzaev ZMO, Dinçer S, Pişkin E (2003) Polymer 44:2897

    Article  CAS  Google Scholar 

  9. Can HK, Rzaev ZMO, Güner A (2005) J Appl Polym Sci 96:2352

    Article  CAS  Google Scholar 

  10. Rzaev ZMO, Dinçer S, Pişkin E (2007) Prog Polym Sci 32:534

    Article  CAS  Google Scholar 

  11. Carter S, Hunt B, Rimmer S (2005) Macromolecules 38:4595

    Article  CAS  Google Scholar 

  12. Carter S, Rimmer S, Sturdy A, Webb M (2005) Macromol Biosci 5:373

    Article  CAS  Google Scholar 

  13. Carter S, Rimmer S, Rutkaite R, Swanson L, Fairclough JPA, Sturdy A, Webb M (2006) Biomacromolecules 7:1124

    Article  CAS  Google Scholar 

  14. Iwatsuki S, Yamashita Y (1965) Makromol Chem 89:205

    Article  CAS  Google Scholar 

  15. Kokubo T, Iwatsuki S, Yamashita Y (1968) Macromolecules 1:482

    Article  CAS  Google Scholar 

  16. Kokubo T, Iwatsuki S, Yamashita Y (1969) Makromol Chem 123:256

    Article  CAS  Google Scholar 

  17. Fujimori K (1975) J Macromol Sci-Chem A 9(4):495

    Google Scholar 

  18. Sadikhzade SI, Rzaev ZM, Kyazimov ShK, Bryksina LV, Kasumov FY (1971) Vysokomol Soyedin B 13:481

    Google Scholar 

  19. Breslow DS (1976) Pure Apl Chem 46:103

    CAS  Google Scholar 

  20. Donaruma IG (1980) In: Donaruma IG, Ottenbrite RM, Vogt O (eds) Anionic polymeric drugs, vol 1. Wiley, New York, p 50

    Google Scholar 

  21. Han MJ, Lee DH, Lee W-Y, Hahn BS (1989) Bull Kor Chem Soc 10:212

    CAS  Google Scholar 

  22. Inaki Y, Nosakura S, Marahashi S (1969) Kobunshi Kagaku 26:471

    CAS  Google Scholar 

  23. Stille JK, Chung DC (1975) Macromolecules 8:114

    Article  CAS  Google Scholar 

  24. Güner A, Rzaev ZMO, Can HK, Kasaroğǧlu M, Güner A, Doğǧan L (2001) Abstr. NATO/ASI conference on polymer based systems on tissue engineering, replacement and regeneration, Oct 15–25. Algarve, Portugal, p 79

  25. Ganachaud F, Monteiro MJ, Gilbert RG, Dourges M-A, Thang SH, Rizzardo E (2000) Macromolecules 33:6738

    Article  CAS  Google Scholar 

  26. Hirano T, Miki H, Seno M, Sato T (2004) J Polym Sci Part A: Polym Chem 42:4404

    Article  CAS  Google Scholar 

  27. Hirano T, Ishii S, Kitajima H, Seno M, Sato T (2005) J Polym Sci Part A: Polym Chem 43:50

    Article  CAS  Google Scholar 

  28. Hirano T, Miki H, Seno M, Sato T (2005) Polymer 46:3693

    Article  CAS  Google Scholar 

  29. Hirano T, Miki, H, Seno M, Sato T (2005) Polymer 46:5501

    Article  CAS  Google Scholar 

  30. Doerksen RJ, Chen B, Liu D, Tew GN, DeGrado WF, Klein ML (2004) Chem Eur J 10:5008

    Article  CAS  Google Scholar 

  31. Nowick IS, Holmes DL, Mackin D, Noronha G, Shaka AJ, Smith EM (1996) J Am Chem Soc 118:2764

    Article  CAS  Google Scholar 

  32. Zeng HO, Miller RS, Flower RA, Gong B (2000) J Am Chem Soc 122:2635

    Article  CAS  Google Scholar 

  33. Ernst JT, Becceril J, Park HS, Yin H, Hamilton AD (2003) Angew Chem Int Ed 42:535

    Article  CAS  Google Scholar 

  34. Dinçer S, Rzaev ZMO, Pişkin E (2006) J Polym Research 13:121

    Article  CAS  Google Scholar 

  35. Rzaev ZMO (2000) Prog Polym Sci 25:163

    Article  CAS  Google Scholar 

  36. Braun D, Hu F (2006) Prog Polym Sci 31:239

    Article  CAS  Google Scholar 

  37. Kelen T, Tüdös F (1975) J Macromol Sci Chem A 9:1

    Google Scholar 

  38. Jaacks VV (1967) Makromol Chem 105:289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out in according to the Polymer Science and Engineering Program of the Chemical Engineering and Chemistry Departments, Hacettepe University (HU) relating to the series “Bioengineering Functional Copolymers.” The supports of the HU Scientific Research Foundation through the HÜ-BAB 0201602006 project and the TÜBÍÝTAK (Türkish National Scientific and Technical Research Council) via TBAG-2386 project are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakir M. O. Rzaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzgören, A., Rzaev, Z.M.O. & Okay, G. Bioengineering functional copolymers: synthesis and characterization of poly(N-isopropyl acrylamide-co-3,4-2H-dihydropyran)s. J Polym Res 14, 329–338 (2007). https://doi.org/10.1007/s10965-007-9116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9116-8

Keywords

Navigation