Skip to main content
Log in

Firms’ rationales for interaction with research universities and the principles for public co-funding

  • Published:
The Journal of Technology Transfer Aims and scope Submit manuscript

Abstract

R&D managers at 50 firms who have formal relations with two research universities in Stockholm are interviewed about their rationales for collaboration. Drawing on this material, a distinctive typology of rationales for establishing cooperative relations is presented. While the typology demonstrates a considerable breadth of interaction rationales, rationales related to innovation, in terms of invented or improved products or processes, are found to be the main drivers for interaction. Based on this framework, we analyse which rationales for interaction are consistent with public rationales for supporting university-industry relationships. Public co-funding that allow firms to influence (part of) the academic agenda is identified as a particularly interesting case that requires further theoretical attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 90% of all respondents indicate that the collaborative project identified by us has been preceded by previous interaction between the firm and the academic research environment.

  2. The questionnaire can be found in Broström (2007).

  3. We recognise that opportunities to leverage R&D budgets through public co-funding of collaborative research help some firms reduce the risks and cost of R&D, and therefore can be considered a rationale in itself. However, since this paper seeks to establish a typology that can be used to discuss terms for public co-funding, we do not consider the pursuit of such funding as a separate rationale.

  4. In this context, we do not differentiate between physical products and services, but instead use the term ‘product’ in a more generalised fashion.

  5. A second demand on public co-funding schemes that is not discussed here is that that they are designed to overcome the economic incentive on universities to charge only variable costs when competing for funding. As is argued by Geuna (2001), such behaviour undermines the rationales for public research funding.

References

  • Adams, J. D. (2006). Learning, internal research, and spillovers. Economics of Innovation and New Technology, 15, 5–36. doi:10.1080/1043859042000332178.

    Article  Google Scholar 

  • Adams, J. D., Chiang, E. P., & Jensen, J. L. (2003). The influence of federal laboratory R&D on industrial research. The Review of Economics and Statistics, 85, 1003–1020. doi:10.1162/003465303772815899.

    Article  Google Scholar 

  • Aghion, P., Dewatripont, M., & Stein, J. C. (2008). Academic freedom, private-sector focus, and the process of innovation. The Rand Journal of Economics, 39, 617–635. doi:10.1111/j.1756-2171.2008.00031.x.

    Article  Google Scholar 

  • Arrow, K. J. (1962). Economic welfare and the allocation of resources for inventions. In R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factors. Princeton: Princeton University Press.

    Google Scholar 

  • Arvanitis, S., Sydow, N., & Woerter, M. (2008). Do specific forms of university-industry knowledge transfer have different impacts on the performance of private enterprises? An empirical analysis based on Swiss data. The Journal of Technology Transfer, 33, 504–533. doi:10.1007/s10961-007-9061-z.

    Article  Google Scholar 

  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17, 99–120. doi:10.1177/014920639101700108.

    Article  Google Scholar 

  • Beise, M., & Stahl, H. (1999). Public research and industrial innovations in Germany. Research Policy, 28, 397–422. doi:10.1016/S0048-7333(98)00126-7.

    Article  Google Scholar 

  • Benner, M., & Sandström, U. (2000). Institutionalizing the triple helix: Research funding and norms in the academic system. Research Policy, 29, 291–301. doi:10.1016/S0048-7333(99)00067-0.

    Article  Google Scholar 

  • Broström, A. (2007). ‘Appendix II: Guide for interviews with firms,’ in Collaboration for Competitiveness, Report to Stockholm County Board.

  • Cameron, G., & Wallace, C. (2007). Technology shops: Efficient pricing in business-university collaborations. Economics of Innovation and New Technology, 16, 17–30. doi:10.1080/10438590600661632.

    Article  Google Scholar 

  • Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from technology. Cambridge: Harvard Business School Press.

    Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: The two faces of R&D. In A. Geuna, A. J. Salter, & W. E. Steinmueller (Eds.), Science and innovation: Rethinking the rationales for funding and governance. Cheltenham, UK: Edward Elgar.

    Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 20, 128–152. doi:10.2307/2393553.

    Article  Google Scholar 

  • Cohen, W. M., Nelson, R. R., & Walsh, J. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science, 48, 1–23. doi:10.1287/mnsc.48.1.1.14273.

    Article  Google Scholar 

  • Colyvas, J., Crow, M., Gelijns, A., Mazzoleni, R., Nelson, R. R., Rosenberg, N., et al. (2002). How do university inventions get into practice? Management Science, 48, 61–72. doi:10.1287/mnsc.48.1.61.14272.

    Article  Google Scholar 

  • D’Este, P., & Patel, P. (2007). University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry? Research Policy, 36, 1295–1313. doi:10.1016/j.respol.2007.05.002.

    Article  Google Scholar 

  • Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21, 1105–1121. doi:10.1002/1097-0266(200010/11)21:10/11<1105:AID-SMJ133>3.0.CO;2-E.

    Article  Google Scholar 

  • Feldman, M. P., & Kelley, M. R. (2006). The ex ante assessment of knowledge spillovers: Government R&D policy, economic incentives and private firm behaviour. Research Policy, 35, 1509–1521. doi:10.1016/j.respol.2006.09.019.

    Article  Google Scholar 

  • Foray, D., & Steinmueller, W. E. (2003). On the economics of R&D and technological collaborations: Insights and results from the project Colline. Economics of Innovation and New Technology, 12, 77–91. doi:10.1080/10438590303118.

    Article  Google Scholar 

  • Gann, D. M., & Salter, A. J. (2000). Innovation in project-based, service enhanced firms: The construction of complex products and systems. Research Policy, 29, 955–972. doi:10.1016/S0048-7333(00)00114-1.

    Article  Google Scholar 

  • Gerybadze, A., & Reger, G. (1999). Globalization of R&D: Recent changes in the management of innovation in transnational corporations. Research Policy, 28, 251–274. doi:10.1016/S0048-7333(98)00111-5.

    Article  Google Scholar 

  • Geuna, A. (2001). The changing rationale for European university research funding: Are there negative unintended consequences? Journal of Economic Issues, 35, 607–632.

    Google Scholar 

  • Gibbons, M., Limogenes, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary society. London: Sage Publication.

    Google Scholar 

  • Giebe, T., Grebe, T., & Wolfstetter, E. (2006). How to allocate R&D (and other) subsidies: An experimentally tested policy recommendation. Research Policy, 35, 1261–1272. doi:10.1016/j.respol.2006.01.008.

    Article  Google Scholar 

  • Goldfarb, B. (2008). The effect of government contracting on academic research: Does the source of funding affect scientific output? Research Policy, 37, 41–58. doi:10.1016/j.respol.2007.07.011.

    Article  Google Scholar 

  • Hagedoorn, J., Link, A. N., & Vonortas, N. S. (2000). Research partnerships. Research Policy, 29, 567–586. doi:10.1016/S0048-7333(99)00090-6.

    Article  Google Scholar 

  • Harryson, S., Kliknaite, S., & Dudkowski, R. (2007). Making innovative use of academic knowledge to enhance corporate technology innovation impact. International Journal of Technology Management, 39, 131–157. doi:10.1504/IJTM.2007.013504.

    Article  Google Scholar 

  • Jacobsson, S. (2002). Universities and industrial transformation: An interpretative and selective literature study with special emphasis on Sweden. Science & Public Policy, 29, 345–365. doi:10.3152/147154302781780831.

    Article  Google Scholar 

  • Kaufmann, A., & Tödtling, F. (2001). Science-industry interaction in the process of innovation: The importance of boundary-crossing between systems. Research Policy, 30, 791–804. doi:10.1016/S0048-7333(00)00118-9.

    Article  Google Scholar 

  • Klevorick, A. K., Levin, R. C., Nelson, R. R., & Winter, S. G. (1995). On the sources and significance of interindustry differences in technological opportunities. Research Policy, 24, 185–205. doi:10.1016/0048-7333(93)00762-I.

    Article  Google Scholar 

  • Laursen, K., & Salter, A. (2006). Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strategic Management Journal, 27, 131–150. doi:10.1002/smj.507.

    Article  Google Scholar 

  • Lee, Y. S. (1998). University-industry collaboration on technology transfer: Views from the ivory tower. Policy Studies Journal: the Journal of the Policy Studies Organization, 26, 69–84. doi:10.1111/j.1541-0072.1998.tb01925.x.

    Google Scholar 

  • Lee, Y. S. (2000). The sustainability of university-industry research collaboration: An empirical assessment. The Journal of Technology Transfer, 25, 111–133. doi:10.1023/A:1007895322042.

    Article  Google Scholar 

  • Lim, K. (2006). The many faces of absorptive capacity: Spillovers of copper interconnect technology for semiconductor chips. Available at SSRN http://ssrn.com/abstract=562862.

  • Link, A. N., & Scott, J. T. (2001). Public/private partnerships: Stimulating competition in a dynamic market. International Journal of Industrial Organization, 19, 763–794. doi:10.1016/S0167-7187(00)00093-X.

    Article  Google Scholar 

  • Lööf, H., & Broström, A. (2008). Does knowledge diffusion between university and industry increase innovativeness? The Journal of Technology Transfer, 33, 73–90. doi:10.1007/s10961-006-9001-3.

    Article  Google Scholar 

  • Lundvall, B.-Å. (2007). National innovation systems: Analytical concept and development tool. Industry and Innovation, 14, 95–119. doi:10.1080/13662710601130863.

    Article  Google Scholar 

  • Mansfield, E. (1998). Academic research and industrial innovation: An update of empirical findings. Research Policy, 26, 773–776. doi:10.1016/S0048-7333(97)00043-7.

    Article  Google Scholar 

  • March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2, 71–87. doi:10.1287/orsc.2.1.71.

    Article  Google Scholar 

  • Martin, S., & Scott, J. T. (2000). The nature of innovation market failure and the design of public support for private innovation. Research Policy, 29, 437–448. doi:10.1016/S0048-7333(99)00084-0.

    Article  Google Scholar 

  • Merton, R. K. (1942). The normative structure of science. In R. K. Merton (Ed.), The Sociology of Science: Theoretical and Empirical Investigations. University of Chicago Press: Chicago, IL. 1973.

    Google Scholar 

  • Mohnen, P., & Hoareau, C. (2003). What type of enterprise forges close links with universities and government labs? Evidence from CIS 2. Managerial and Decision Economics, 24, 133–145. doi:10.1002/mde.1086.

    Article  Google Scholar 

  • Mowery, D. (1998). The changing structure of the US national innovation system: Implications for international conflict and cooperation in R&D policy. Research Policy, 27, 639–654. doi:10.1016/S0048-7333(98)00060-2.

    Article  Google Scholar 

  • Murray, F., Aghion, P., Dewatripont, M., Kolev, J., & Stern, S. (2009). Of mice and academics: Examining the effect of openness on innovation. NBER Working Paper No. w14819.

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26, 317–330. doi:10.1016/S0048-7333(97)00013-9.

    Article  Google Scholar 

  • Pavitt, K. (2001). Public policies to support basic research: What can the rest of the world learn from US theory and practise? (And what should they not learn?). Industrial and Corporate Change, 10, 761–779. doi:10.1093/icc/10.3.761.

    Article  Google Scholar 

  • Santoro, M. D., & Chakrabarti, A. K. (2002). Firm size and technology centrality in industry-university interactions. Research Policy, 31, 1163–1180. doi:10.1016/S0048-7333(01)00190-1.

    Article  Google Scholar 

  • Scott, A. (2001). The influence of social science on innovation: A significant missing element in mode 2/Triple Helix debates? Swedish Journal of Science and Technology, 13, 53–71. VEST.

    Google Scholar 

  • Siegel, D., Waldman, D. A., Atwater, L. E., & Link, A. N. (2003). Commercial knowledge transfers from universities to firms: Improving the effectiveness of university-industry collaboration. The Journal of High Technology Management Research, 14, 111–133. doi:10.1016/S1047-8310(03)00007-5.

    Article  Google Scholar 

  • Siegel, D., & Zervos, V. (2002). Strategic research partnerships and economic performance: Empirical issues. Science & Public Policy, 29, 331–343. doi:10.3152/147154302781780859.

    Article  Google Scholar 

  • Stokes, D. (1997). Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.

    Google Scholar 

  • Teece, D., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18, 509–533. doi:10.1002/(SICI)1097-0266(199708)18:7<509:AID-SMJ882>3.0.CO;2-Z.

    Article  Google Scholar 

  • Teece, D., Pisano, G., & Shuen, A. (2000). Dynamic capabilities and strategic management. In G. Dosi, R. R. Nelson, & S. G. Winter (Eds.), The nature and dynamics of organizational capabilities (pp. 334–362). Oxford: Oxford University Press.

    Google Scholar 

  • Tidd, J., Bessant, J., & Pavitt, K. (2001). Managing innovation: Integrating technological, market and organizational change. Chichester, West Sussex: Wiley.

    Google Scholar 

  • Veugelers, R., & Cassiman, B. (2005). R&D cooperation between firms and universities. Some empirical evidence from Belgian manufacturing. International Journal of Industrial Organization, 23, 355–379. doi:10.1016/j.ijindorg.2005.01.008.

    Article  Google Scholar 

  • Zaheer, A., & Bell, G. (2005). Benefiting from network position: Firm capabilities, structural holes, and performance. Strategic Management Journal, 26, 809–825. doi:10.1002/smj.482.

    Article  Google Scholar 

  • Ziman, J. M. (2000). Real science: What it is, and what it means. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

Maria Johansson and Andreas Högberg at the Swedish Institute for Studies in Education and Research shared the task of interviewing firms with the author. The author is very grateful for the helpful comments from Göran Melin, Maria Theresa Larsen, Reinhilde Veugelers and one anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Broström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broström, A. Firms’ rationales for interaction with research universities and the principles for public co-funding. J Technol Transf 37, 313–329 (2012). https://doi.org/10.1007/s10961-010-9177-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10961-010-9177-4

Keywords

JEL Classification

Navigation