Skip to main content
Log in

General Mean Reflected Backward Stochastic Differential Equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The present paper is devoted to the study of backward stochastic differential equations (BSDEs) with mean reflection formulated by Briand et al. (Ann Appl Probab 28(1):482–510, 2018). We investigate the solvability of a generalized mean reflected BSDE, whose driver also depends on the distribution of solution term Y. Using a fixed-point argument, BMO martingale theory and the \(\theta \)-method, we establish existence and uniqueness results for such BSDEs in several typical situations, including the case where the driver is quadratic with bounded or unbounded terminal condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Briand, P., Delyon, B., Hu, Y., Pardoux, E., Stoica, L.: \(L^p\)-solutions of backward stochastic differential equations. Stoch. Process. Appl. 108(1), 109–129 (2003)

    Article  Google Scholar 

  2. Barrieu, P., El Karoui, N.: Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs. Ann. Probab. 41(3B), 1831–1863 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bouchard, B., Elie, R., Réveillac, A.: BSDEs with weak terminal condition. Ann. Probab. 43(2), 572–604 (2015)

    Article  MathSciNet  Google Scholar 

  4. Briand, P., Cardaliaguet, P., Chaudru de Raynal, P.É., Hu, Y.: Forward and backward stochastic differential equations with normal constraints in law. Stoch. Process. Appl. 130(12), 7021–7097 (2020)

    Article  MathSciNet  Google Scholar 

  5. Briand, P., Chaudru de Raynal, P.É., Guillin, A., Labart, C.: Particles systems and numerical schemes for mean reflected stochastic differential equations. Ann. Appl. Probab. 30(4), 1884–1909 (2020)

    Article  MathSciNet  Google Scholar 

  6. Briand, P., Elie, R.: A simple constructive approach to quadratic BSDEs with or without delay. Stoch. Process. Appl. 123(8), 2921–2939 (2013)

    Article  MathSciNet  Google Scholar 

  7. Briand, P., Ghannoum, A., Labart, C.: Mean reflected stochastic differential equations with jumps. Adv. Appl. Probab. 52, 523–562 (2020)

    Article  MathSciNet  Google Scholar 

  8. Briand, P., Hibon, H.: Particles systems for mean reflected BSDEs. Stoch. Process. Their Appl. 131, 253–275 (2021)

    Article  MathSciNet  Google Scholar 

  9. Briand, P., Elie, R., Hu, Y.: BSDEs with mean reflection. Ann. Appl. Probab. 28(1), 482–510 (2018)

    Article  MathSciNet  Google Scholar 

  10. Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields 136, 604–618 (2006)

    Article  MathSciNet  Google Scholar 

  11. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Fields 141, 543–567 (2008)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y., Hamadène, S., Mu, T.: Mean-field doubly reflected backward stochastic differential equations. Numer. Algebra Control Optim. 13(3–4), 431–460 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  13. Djehiche, B., Elie, R., Hamadène, S.: Mean-field reflected backward stochastic differential equations. Ann. Appl. Probab. (2023) (in press)

  14. Djehiche, B., Dumitrescu, R.: Zero-sum mean-field Dynkin games: characterization and convergence. arXiv:2202.02126

  15. Djehiche, B., Dumitrescu, R., Zeng, J.: A propagation of chaos result for weakly interacting nonlinear Snell envelopes. arxiv:2111.14315

  16. Fan, S., Hu, Y., Tang, S.: Multi-dimensional backward stochastic differential equations of diagonally quadratic generators: the general result. J. Differ. Equ. 368, 105–140 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hibon, H., Hu, Y., Lin, Y., Luo, P., Wang, F.: Quadratic BSDEs with mean reflection. Math. Control Relat. Fields 8(3–4), 721–738 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hibon, H., Hu, Y., Tang, S.: Mean-field type quadratic BSDEs. Numer. Algebra Control Optim. 13(3–4), 392–412 (2023)

    Article  MathSciNet  Google Scholar 

  19. Hu, Y., Moreau, R., Wang, F.: Quadratic mean-field reflected BSDEs. Probab. Uncertain. Quant. Risk 7(3), 169–194 (2022)

    Article  MathSciNet  Google Scholar 

  20. Kazamaki, N.: Continuous exponential martingales and BMO. In: Lecture Notes in Mathematics, vol. 1579. Springer, Berlin (1994)

  21. Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28(2), 558–602 (2000)

    Article  MathSciNet  Google Scholar 

  22. Zhang, J.: Backward stochastic differential equations. In: From Linear to Fully Nonlinear Theory, Volume 86 of Probability Theory and Stochastic Modelling. Springer, New York (2017)

Download references

Acknowledgements

The authors would like to thank the associate editor and an anonymous referee for their valuable suggestions and comments which led to a much improved version of the manuscript. Ying Hu and Remi Moreau acknowledge financial support from the Lebesgue Center of Mathematics “Investissements d’avenir” program-ANR-11-LABX-0020-01. Falei Wang acknowledges financial support from the National Natural Science Foundation of China (Nos. 12171280 and 12031009), the Natural Science Foundation of Shandong Province (Nos. ZR2021YQ01 and ZR2022JQ01) and the National Key R &D Program of China (Nos. 2018YFA0703900 and 2022YFA1006104).

Author information

Authors and Affiliations

Authors

Contributions

YH: funding acquisition, investigation, project administration, resources, supervision, writing; RM: formal analysis, methodology, validation, writing; FW: conceptualization, formal analysis, funding acquisition, investigation, methodology, writing.

Corresponding author

Correspondence to Falei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix is devoted to the proofs of Lemmas 8 and 9, which we give for the reader’s convenience. The main idea is the same as in Lemma 6 or [19, Theorem 4.1].

1.1 A.1 Proof of Lemma 8

In view of Lemma 1 and Remark 6, we have for any \(m\ge 1\),

$$\begin{aligned} Y^{(m)}_t= y^{(m)}_t+\sup \limits _{t\le s\le T}L_s\big (y^{(m)}_s\big ),\quad \forall t\in [0,T], \end{aligned}$$
(22)

where \(y^{(m)}_t\) is the solution to the following quadratic BSDE

$$\begin{aligned} y^{(m)}_t=\xi +\int ^{T}_t f\left( s,Y^{(m-1)}_s,\textbf{P}_{Y^{(m-1)}_s},z^{(m)}_s\right) ds-\int ^{T}_t z^{(m)}_s dB_s. \end{aligned}$$
(23)

Applying assertion (i) of Lemma 5 and (19) yields for any \(t\in [0,T]\),

$$\begin{aligned} \exp \left\{ {\gamma }\big \vert y^{(m)}_t\big \vert \right\}&\le \textbf{E}_t\bigg [\exp \bigg \{\gamma \bigg (\vert \xi \vert +\int ^T_0 \alpha _sds+\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\big \vert Y^{(m-1)}_{s}\big \vert \nonumber \\&\quad +\sup \limits _{s\in [t,T]}\textbf{E}\left[ \big \vert Y^{(m-1)}_{s}\big \vert \right] \bigg )\bigg )\bigg \}\bigg ]. \end{aligned}$$
(24)

Using Doob’s maximal inequality, we get for each \(m\ge 1, p\ge 2 \) and \(t\in [0,T]\),

$$\begin{aligned}&\textbf{E}\bigg [\exp \bigg \{{p\gamma }\sup \limits _{s\in [t,T]}\big \vert y^{(m)}_s\big \vert \bigg \}\bigg ]\nonumber \\&\quad \le 4 \textbf{E}\bigg [\exp \bigg \{p\gamma \bigg (\vert \xi \vert +\int ^T_0 \alpha _sds+\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\vert Y^{(m-1)}_{s}\vert \nonumber \\&\qquad +\sup \limits _{s\in [t,T]}\textbf{E}\big [\big \vert Y^{(m-1)}_{s}\big \vert \big ]\bigg )\bigg )\bigg \} \bigg ]. \end{aligned}$$
(25)

Recalling (22), we have

$$\begin{aligned} \big \vert Y^{(m)}_t\big \vert \le \big \vert y^{(m)}_t\big \vert +\sup \limits _{0\le s\le T}\vert L_s(0)\vert +\kappa \sup \limits _{t\le s\le T}\textbf{E}\big [\vert y^{(m)}_s\vert \big ]. \end{aligned}$$

Set \(\widetilde{\alpha }=\sup \limits _{0\le s\le T}\vert L_s(0)\vert +\int ^T_0 \alpha _sds\). Using Jensen’s inequality, we get for any \(m\ge 1\), \(p\ge 2 \) and \(t\in [0,T]\),

$$\begin{aligned}&\textbf{E}\left[ \exp \bigg \{{p\gamma }\sup \limits _{s\in [t,T]}\big \vert Y^{(m)}_s\big \vert \bigg \}\right] \\&\quad \le e^{p\gamma \sup \limits _{0\le s\le T}\vert L_s(0)\vert }\,\textbf{E}\left[ \exp \big \{{p\gamma }\sup \limits _{s\in [t,T]}\big \vert y^{(m)}_s\big \vert \big \}\right] \textbf{E}\left[ \exp \big \{{\kappa p\gamma }\sup \limits _{s\in [t,T]}\big \vert y^{(m)}_s\big \vert \big \}\right] \\&\quad \le e^{p\gamma \sup \limits _{0\le s\le T}\vert L_s(0)\vert }\,\textbf{E}\left[ \exp \big \{(2+2\kappa ){p\gamma }\sup \limits _{s\in [t,T]}\big \vert y^{(m)}_s\big \vert \big \}\right] \\&\quad \le 4 \textbf{E}\left[ \exp \bigg \{(2+2\kappa )p\gamma \bigg (\vert \xi \vert +\widetilde{\alpha }+\beta (T-t)\sup \limits _{s\in [t,T]}\vert Y^{(m-1)}_{s}\vert \bigg )\bigg \}\right] \\&\qquad \times \textbf{E}\left[ \exp \bigg \{(2+2\kappa )p\gamma \beta (T-t)\sup \limits _{s\in [t,T]}\vert Y^{(m-1)}_{s}\vert \bigg \} \right] . \end{aligned}$$

Choose a constant \(h\in (0,T]\) depending only on \(\beta \) and \(\kappa \) such that

$$\begin{aligned} (32+64\kappa )\beta h <1. \end{aligned}$$
(26)

In view of Hölder’s inequality, we obtain that for any \(p\ge 2\),

$$\begin{aligned}&\textbf{E}\left[ \exp \bigg \{{p\gamma }\sup \limits _{s\in [T-h,T]}\big \vert Y^{(m)}_s\big \vert \bigg \}\right] \nonumber \\&\quad \le 4 \textbf{E}\left[ \exp \bigg \{{(4+4\kappa ) p\gamma }(\vert \xi \vert +\widetilde{\alpha })\bigg \}\right] ^{\frac{1}{2}}\nonumber \\&\quad \times \textbf{E}\left[ \exp \bigg \{(4+4\kappa )\beta hp\gamma \sup \limits _{s\in [T-h,T]}\big \vert Y^{(m-1)}_{s}\big \vert \bigg \} \right] \nonumber \\&\quad \le 4\textbf{E}\left[ \exp \bigg \{{(8+8\kappa ) p\gamma }\vert \xi \vert \bigg \}\right] ^{\frac{1}{4}}\textbf{E}\left[ \exp \bigg \{{(8+8\kappa ) p\gamma }\widetilde{\alpha }\bigg \}\right] ^{\frac{1}{4}} \nonumber \\&\qquad \times \textbf{E}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [T-h,T]}\big \vert Y^{(m-1)}_{s}\big \vert \bigg \} \right] ^{(4+4\kappa )\beta h}. \end{aligned}$$
(27)

Define \( \rho = \frac{1}{1-(4+4\kappa )\beta h}\) and

$$\begin{aligned} \mu := {\left\{ \begin{array}{ll} \frac{T}{h}, &{}\text {if}\quad \frac{T}{h} \text { is an integer };\\ {[}\frac{T}{h}{]}+1, &{}\text {otherwise}. \end{array}\right. } \end{aligned}$$

If \(\mu =1\), it follows from (27) that for each \(p\ge 2\) and \(m\ge 1\),

$$\begin{aligned}&\textbf{E}\bigg [\exp \bigg \{p\gamma \sup \limits _{s\in [0,T]}\big \vert Y^{(m)}_s\big \vert \bigg \} \bigg ] \\&\quad \le 4\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma }\vert \xi \vert \bigg \}\bigg ]^{\frac{1}{4}}\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma }\widetilde{\alpha }\bigg \}\bigg ]^{\frac{1}{4}}\\&\qquad \times \textbf{E}\bigg [\exp \bigg \{{p\gamma } \sup \limits _{s\in [0,T]}\vert Y^{(m-1)}_s\vert \bigg \} \bigg ]^{(4+4\kappa )\beta h}. \end{aligned}$$

Iterating the above procedure m times yields, given the definition of \(\rho \),

$$\begin{aligned}&\textbf{E}\bigg [\exp \bigg \{{p\gamma }\sup \limits _{s\in [0,T]}\big \vert Y^{(m)}_s\big \vert \bigg \} \bigg ]\nonumber \\&\quad \le 4^{\rho }\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma } \vert \xi \vert \bigg \}\bigg ]^{\frac{\rho }{4}}\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma } \widetilde{\alpha }\bigg \}\bigg ]^{\frac{\rho }{4}}, \end{aligned}$$
(28)

which is uniformly bounded with respect to m thanks to assumptions (H1\(''\)) and (H2\(''\)). If \(\mu = 2\), proceeding identically as above, we have for any \(p\ge 2\),

$$\begin{aligned}&\textbf{E}\bigg [\exp \bigg \{{p\gamma }\sup \limits _{s\in [T-h,T]}\big \vert Y^{(m)}_s\big \vert \bigg \} \bigg ]\nonumber \\&\quad \le 4^{\rho }\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa )p\gamma } \vert \xi \vert \bigg \}\bigg ]^{\frac{\rho }{4}}\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma } \widetilde{\alpha }\bigg \}\bigg ]^{\frac{\rho }{4}}. \end{aligned}$$
(29)

We then consider the following quadratic reflected BSDE over the time interval \([0,T-h]\):

$$\begin{aligned} {\left\{ \begin{array}{ll} Y_t^{(m)}=Y_{T-h}^{(m)}+\int _t^{T-h} f^{Y^{(m-1)}}(s, Z^{(m)}_s)ds-\int _t^{T-h} Z^{(m)}_sdB_s+K^{(m)}_{{T-h}}-K^{(m)}_t,\\ \textbf{E}[\ell (t,Y^{(m)}_t)]\ge 0,\quad \forall t\in [0,T-h] \,\, \text{ and } \,\, \int _0^{T-h} \textbf{E}[\ell (t,Y^{(m)}_t)] dK^{(m)}_t = 0. \end{array}\right. } \end{aligned}$$

According to the derivation of (28), we deduce that

$$\begin{aligned}&\textbf{E}\bigg [\exp \bigg \{{p\gamma }\sup \limits _{s\in [0,T-h]}\big \vert Y^{(m)}_s\big \vert \bigg \} \bigg ]\\&\quad \le 4^{\rho }\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma }\big \vert Y_{T-h}^{(m)}\big \vert \bigg \}\bigg ]^{\frac{\rho }{4}}\textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma } \widetilde{\alpha }\bigg \}\bigg ]^{\frac{\rho }{4}}\\&\quad \le 4^{\rho +{\frac{\rho ^2}{4}}}\textbf{E}\bigg [\exp \bigg \{({8+8\kappa })^2 p\gamma \vert \xi \vert \bigg \}\bigg ]^{\frac{\rho ^2}{16}}\textbf{E}\bigg [\exp \bigg \{({8+8\kappa })^2 p\gamma \widetilde{\alpha }\bigg \}\bigg ]^{\frac{\rho ^2}{16}}\\&\qquad \times \textbf{E}\bigg [\exp \bigg \{{(8+8\kappa ) p\gamma } \widetilde{\alpha }\bigg \}\bigg ]^{\frac{\rho }{4}}, \end{aligned}$$

where we used (29) in the last inequality. Putting the above inequalities together and applying Hölder’s inequality again yields for any \(p\ge 2\),

$$\begin{aligned}&\textbf{E}\bigg [\exp \bigg \{{p\gamma }\sup \limits _{s\in [0,T]}\big \vert Y^{(m)}_s\big \vert \bigg \}\bigg ]\nonumber \\&\quad \le \textbf{E}\bigg [\exp \bigg \{{2p\gamma }\sup \limits _{s\in [0,T-h]}\vert Y^{(m)}_s\vert \bigg \} \bigg ]^{\frac{1}{2}} \textbf{E}\bigg [\exp \bigg \{{2p\gamma }\sup \limits _{s\in [T-h,T]}\vert Y^{(m)}_s\vert \bigg \} \bigg ]^{\frac{1}{2}}\nonumber \\&\quad \le 4^{\rho +{\frac{\rho ^2}{8}}}\textbf{E}\bigg [\exp \bigg \{(8+8\kappa )^2 2p\gamma \vert \xi \vert \bigg \}\bigg ]^{\frac{\rho }{8}+\frac{\rho ^2}{32}}\textbf{E}\bigg [\exp \bigg \{(8+8\kappa )^2 2p\gamma \widetilde{\alpha }\bigg \}\bigg ]^{\frac{\rho }{4}+\frac{\rho ^2}{32}}, \end{aligned}$$
(30)

which is also uniformly bounded with respect to m.

Iterating the above procedure \(\mu \) times in the general case, we get

$$\begin{aligned} \sup \limits _{m\ge 0}\textbf{E}\bigg [\exp \bigg \{p\gamma \sup \limits _{s\in [0,T]}\vert Y^{(m)}_s\vert \bigg \} \bigg ]<\infty , \ \forall p\ge 1, \end{aligned}$$

which together with (25) implies that

$$\begin{aligned} \sup \limits _{m\ge 0}\textbf{E}\bigg [\exp \bigg \{p\gamma \sup \limits _{s\in [0,T]}\vert y^{(m)}_s\vert \bigg \} \bigg ]<\infty , \quad \forall p\ge 1. \end{aligned}$$
(31)

It follows from Lemma 1 and assumption (H4) that

$$\begin{aligned} \sup \limits _{m\ge 0}K^{(m)}_T\le \sup \limits _{0\le s\le T}\vert L_s(0)\vert +\sup \limits _{m\ge 0}\textbf{E}\bigg [\sup \limits _{s\in [0,T]}\left| y^{(m)}_s\right| \bigg ]<\infty . \end{aligned}$$

Finally, noting \(Z^{(m)}=z^{(m)}\) and applying [11, Corollary 4] to the quadratic BSDE (23) leads to

$$\begin{aligned} \sup \limits _{m\ge 0}\textbf{E}\left[ \bigg (\int ^T_0\left| Z^{(m)}_t\right| ^2dt\bigg )^p \right] <\infty , \ \forall p\ge 1, \end{aligned}$$

which ends the proof.

1.2 A.2 Proof of Lemma 9

Without loss of generality, assume \(f(t,y,v,\cdot )\) is concave, since the other case can be proved by a similar analysis, as discussed in Remark 7. For each fixed \(m,q\ge 1\) and \(\theta \in (0,1)\), we can define similarly \(\delta _{\theta }\ell ^{(m,q)}\), \(\delta _{\theta }\widetilde{\ell }^{(m,q)}\) and \(\delta _{\theta }\overline{\ell }^{(m,q)}\) for yz. Then, the pair of processes \((\delta _{\theta }y^{(m,q)},\delta _{\theta }z^{(m,q)})\) satisfies the following BSDE:

$$\begin{aligned} \delta _{\theta }y^{(m,q)}_t=&-\xi +\int ^T_t\left( \delta _{\theta }f^{(m,q)}\left( s,\delta _{\theta }z^{(m,q)}_s\right) +\delta _{\theta }f_0^{(m,q)}(s)\right) ds-\int ^T_t\delta _{\theta }z^{(m,q)}_sdB_s, \end{aligned}$$
(32)

where the generator is given by

$$\begin{aligned} \delta _{\theta }f_0^{(m,q)}(t)\!&=\! \frac{1}{1-\theta }\left( f\left( t,Y^{(m+q-1)}_{t},\textbf{P}_{Y^{(m+q-1)}_{t}}, z^{(m)}_t\right) \!-\!f\left( t,Y^{(m-1)}_{t},\textbf{P}_{Y^{(m-1)}_{t}}, z^{(m)}_t\right) \right) ,\\ \delta _{\theta }f^{(m,q)}(t,z)\!&=\!\frac{1}{1-\theta }\bigg ( \theta f\left( t,Y^{(m+q-1)}_{t},\textbf{P}_{Y^{(m+q-1)}_{t}}, z^{(m+q)}_t\right) \! \\&\quad - \! f\left( t,Y^{(m+q-1)}_{t},\textbf{P}_{Y^{(m+q-1)}_{t}}, -(1-\theta )z+\theta z^{(m+q)}_t\right) \bigg ). \end{aligned}$$

From assumption \((H2'')\), we get

$$\begin{aligned} \delta _{\theta }f_0^{(m,q)}(t)&\le \beta \left( \vert Y^{(m+q-1)}_{t}\vert +\vert \delta _{\theta }Y^{(m-1,q)}_t\vert +\textbf{E}\bigg [\left| Y^{(m+q-1)}_{t}\right| +\left| \delta _{\theta }Y^{(m-1,q)}_t\right| \bigg ]\right) ,\\ \delta _{\theta }f^{(m,q)}(t,z)&\le -f\left( t,Y^{(m+q-1)}_t,\textbf{P}_{Y^{(m+q-1)}_{t}}, -z\right) \\&\le \alpha _t+\beta \left( \left| Y^{(m+q-1)}_t\right| +\textbf{E}\bigg [\left| Y^{(m+q-1)}_{t}\right| \bigg ]\right) +\frac{\gamma }{2}\vert z\vert ^2. \end{aligned}$$

Set \(C_3:=2\sup \limits _{m}\textbf{E}\big [\sup \limits _{s\in [0,T]}\vert Y^{(m)}_{s}\vert \big ]<\infty \) (see Lemma 8) and for any \(m,q\ge 1\), denote

$$\begin{aligned} \zeta ^{(m,q)}&=\vert \xi \vert +\beta T C_3+\int ^T_0\alpha _sds+\beta T\left( \sup \limits _{s\in [0,T]}\left| Y^{(m-1)}_{s}\right| +\sup \limits _{s\in [0,T]}\left| Y^{(m+q-1)}_{s}\right| \right) ,\\ \chi ^{(m,q)}&=2\beta T C_3+\int ^T_0\alpha _sds+2 \beta T \left( \sup \limits _{s\in [0,T]}\left| Y^{(m+q-1)}_{s}\right| +\sup \limits _{s\in [0,T]}\left| Y^{(m-1)}_{s}\right| \right) . \end{aligned}$$

Applying assertion (ii) of Lemma 5 to (32) yields for any \(p\ge 1\),

$$\begin{aligned}&\exp \left\{ {p\gamma }\big (\delta _{\theta }y^{(m,q)}_t\big )^+\right\} \\&\quad \le \textbf{E}_t\exp \bigg \{p\gamma \bigg (\vert \xi \vert +\chi ^{(m,q)}+\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\vert \delta _{\theta }Y^{(m-1,q)}_{s}\vert \\&\qquad +\sup \limits _{s\in [t,T]}\textbf{E}[\vert \delta _{\theta }Y^{(m-1,q)}_{s}\vert ] \bigg )\bigg )\bigg \} \end{aligned}$$

and in a similar way, we also have

$$\begin{aligned} \exp \left\{ {p\gamma }\big (\delta _{\theta }\widetilde{y}^{(m,q)}_t\big )^+\right\}&\le \textbf{E}_t\bigg [\exp \bigg \{p\gamma \bigg (\vert \xi \vert +\chi ^{(m,q)}+\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\vert \delta _{\theta }\widetilde{Y}^{(m-1,q)}_{s}\vert \\&\quad +\sup \limits _{s\in [t,T]}\textbf{E}[\vert \delta _{\theta }\widetilde{Y}^{(m-1,q)}_{s}\vert ] \bigg )\bigg )\bigg )\bigg \}\bigg ]. \end{aligned}$$

According to the fact that

$$\begin{aligned} \big (\delta _{\theta }{y}^{(m,q)}\big )^- \le \big (\delta _{\theta }\widetilde{y}^{(m,q)}\big )^++2\vert y^{(m)}\vert \ \text {and}\ \big (\delta _{\theta }\widetilde{y}^{(m,q)}\big )^- \le \big (\delta _{\theta }{y}^{(m,q)}\big )^++2\vert y^{(m+q)}\vert , \end{aligned}$$

we derive, using Hölder’s inequality and (24), that

$$\begin{aligned}&\exp \left\{ p\gamma \big \vert \delta _{\theta }{y}^{(m,q)}_t\big \vert \right\} \vee \exp \left\{ p\gamma \big \vert \delta _{\theta }\widetilde{y}^{(m,q)}_t\big \vert \right\} \\&\quad \le \exp \left\{ {p\gamma }\bigg (\bigg ( \delta _{\theta }{y}^{(m,q)}_t\bigg )^++\bigg (\delta _{\theta }\widetilde{y}^{(m,q)}_t\bigg )^++2\left| y^{(m)}_t\right| +2\left| y^{(m+q)}_t\right| \bigg )\right\} \\&\quad \le \textbf{E}_t\bigg [\exp \bigg \{p\gamma \bigg (\vert \xi \vert +\chi ^{(m,q)}+\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\\&\qquad +\sup \limits _{s\in [t,T]}\textbf{E}\left[ \delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\right] \bigg )\bigg )\bigg \} \bigg ]^2\exp \left\{ {2p\gamma }\bigg (\left| y^{(m)}_t\right| +\left| y^{(m+q)}_t\right| \bigg )\right\} \\&\quad \le \textbf{E}_t\bigg [\exp \bigg \{p\gamma \bigg (\vert \xi \vert +\chi ^{(m,q)}+\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\\&\qquad +\sup \limits _{s\in [t,T]}\textbf{E}\left[ \delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\right] \bigg )\bigg )\bigg \}\bigg ]^2 \textbf{E}_t\left[ \exp \bigg \{4p\gamma \zeta ^{(m,q)} \bigg \} \right] . \end{aligned}$$

In view of Doob’s maximal inequality and Hölder’s inequality, we obtain that for all \(p> 1\) and \(t\in [0,T]\)

$$\begin{aligned}&\mathbf {{E}}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [t,T]}\delta _{\theta }\overline{y}^{(m,q)}_s\bigg \}\right] \\&\quad \le 4 \textbf{E}\bigg [\exp \bigg \{8p\gamma \bigg (\vert \xi \vert +{\chi }^{(m,q)} +\beta (T-t)\bigg (\sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\\&\qquad +\sup \limits _{s\in [t,T]}\textbf{E}\left[ \delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\right] \bigg ) \bigg )\bigg \}\bigg ]^{\frac{1}{2}} \textbf{E}\left[ \exp \bigg \{16p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{\frac{1}{2}}\\&\quad \le 4 \textbf{E}\left[ \exp \bigg \{8p\gamma \bigg (\vert \xi \vert +{\chi }^{(m,q)} +\beta (T-t)\sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s} \bigg )\bigg \} \right] ^{\frac{1}{2}} \\&\qquad \times \textbf{E}\left[ \exp \bigg \{8\beta (T-t) p\gamma \sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s} \bigg )\bigg \} \right] ^{\frac{1}{2}} \textbf{E}\left[ \exp \bigg \{16p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{\frac{1}{2}}. \end{aligned}$$

Set \( C_4:=\sup \limits _{0\le s\le T}\vert L_s(0)\vert +2\kappa \sup \limits _{m}\textbf{E}\big [\sup \limits _{s\in [0,T]}\vert y^{(m)}_{s}\vert \big ]<\infty \) (see (31)). Recalling (22) and assumption (H4),

$$\begin{aligned} \delta _{\theta }\overline{Y}^{(m,q)}_t\le \delta _{\theta }\overline{y}^{(m,q)}_t+2\kappa \sup \limits _{t\le s\le T}\textbf{E}\left[ \delta _{\theta }\overline{y}^{(m,q)}_t\right] +2C_4, \end{aligned}$$

which together with Jensen’s inequality implies that for each \(p\ge 1\) and \(t\in [0,T]\)

$$\begin{aligned}&\textbf{E}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m,q)}_s\bigg \}\right] \le e^{2p\gamma C_4}\textbf{E}\left[ \exp \bigg \{(2+4\kappa )p\gamma \sup \limits _{s\in [t,T]}\delta _{\theta }\overline{y}^{(m,q)}_s\bigg \}\right] \\&\quad \le 4 \textbf{E}\left[ \exp \bigg \{(16+32\kappa )p\gamma \bigg (\vert \xi \vert +{\chi }^{(m,q)}+C_4 +\beta (T-t)\sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s} \bigg )\bigg \} \right] ^{\frac{1}{2}} \\&\qquad \times \textbf{E}\left[ \exp \bigg \{(16+32\kappa )\beta (T-t) p\gamma \sup \limits _{s\in [t,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s} \bigg )\bigg \} \right] ^{\frac{1}{2}} \\&\qquad \times \textbf{E}\left[ \exp \bigg \{(32+64\kappa )p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{\frac{1}{2}}. \end{aligned}$$

Choosing h as in (26), we have

$$\begin{aligned}&\mathbf {{E}}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [T-h,T]}\delta _{\theta }\overline{Y}^{(m,q)}_s\bigg \}\right] \nonumber \\&\quad \le 4\mathbf {{E}}\left[ \exp \bigg \{{(64+128\kappa ) p\gamma }\vert \xi \vert \bigg \} \right] ^{\frac{1}{8}}\mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa ) p\gamma \big ({\chi }^{(m,q)}+C_4\big )\bigg \} \right] ^{\frac{1}{8}}\nonumber \\&\qquad \ \times \textbf{E}\left[ \exp \bigg \{(32+64\kappa ) p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{\frac{1}{2}} \mathbf {{E}}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [T-h,T]}\delta _{\theta }\overline{Y}^{(m-1,q)}_{s}\bigg \} \right] ^{(16+32\kappa )\beta h}. \end{aligned}$$
(33)

Set \( \widetilde{\rho } = \frac{1}{1-(16+32\kappa )\beta h}\). If \(\mu =1\), it follows from (33) that for each \(p\ge 1\) and \(m,q\ge 1\),

$$\begin{aligned}&\textbf{E}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [0,T]}\delta _{\theta }\overline{Y}^{(m,q)}_s\bigg \}\right] \\&\quad \le 4^{{\widetilde{\rho }}}\mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa ) p\gamma \vert \xi \vert \bigg \} \right] ^{\frac{\widetilde{\rho }}{8}}\sup \limits _{m,q\ge 1}\mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa ) p\gamma \big ({\chi }^{(m,q)}+C_4\big )\bigg \} \right] ^{\frac{\widetilde{\rho }}{8}}\\&\qquad \times \sup \limits _{m,q\ge 1}\textbf{E}\left[ \exp \bigg \{(32+64\kappa )p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{\frac{\widetilde{\rho }}{2}}\\&\qquad \times \mathbf {{E}}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [0,T]}\delta _{\theta }\overline{Y}^{(1,q)}_{s}\bigg \} \right] ^{(16\beta h+32\kappa \beta h)^{m-1}}. \end{aligned}$$

The result from Lemma 8 insures that for any \(\theta \in (0,1)\)

$$\begin{aligned} \lim _{m\rightarrow \infty }\sup \limits _{q\ge 1}\mathbf {{E}}\left[ \exp \bigg \{p\gamma \sup \limits _{s\in [0,T]}\delta _{\theta }\overline{Y}^{(1,q)}_{s}\bigg \} \right] ^{(16\beta h+32\kappa \beta h)^{m-1}}=1, \end{aligned}$$

which implies that

$$\begin{aligned}&\sup \limits _{\theta \in (0,1)}\lim _{m\rightarrow \infty }\sup \limits _{q\ge 1}\textbf{E}\left[ \exp \big \{p\gamma \sup \limits _{s\in [0,T]}\delta _{\theta }\overline{Y}^{(m,q)}_s\big \}\right] \\&\quad \le 4^{\widetilde{\rho }}\sup \limits _{m,q\ge 1}\mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa ) p\gamma \big ({\chi }^{(m,q)}+C_4\big )\bigg \}\right] ^{\frac{\widetilde{\rho }}{8}}\\&\qquad \times \mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa ) p\gamma \vert \xi \vert \bigg \} \right] ^{\frac{\widetilde{\rho }}{8}}\sup \limits _{m,q\ge 1}\textbf{E}\left[ \exp \bigg \{(32+64\kappa )p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{\frac{\widetilde{\rho }}{2}}<\infty . \end{aligned}$$

If \(\mu =2\), in view of the derivation of (30), we conclude that for any \(p\ge 1\),

$$\begin{aligned}&\textbf{E}\left[ \exp \big \{{p\gamma }\sup \limits _{s\in [0,T]}\delta _{\theta }\overline{Y}^{(m,q)}_s\big \} \right] \\&\quad \le 4^{\widetilde{\rho }+{\frac{\widetilde{\rho }^2}{16}}}\textbf{E}\left[ \exp \bigg \{(64+128\kappa )^2 2p\gamma \vert \xi \vert \bigg \} \right] ^{{\frac{\widetilde{\rho }}{16}+\frac{\widetilde{\rho }^2}{128}}}\\&\qquad \times \sup \limits _{m,q\ge 1}\mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa )^2 2p\gamma \big ({\chi }^{(m,q)}+C_4\big )\bigg \} \right] ^{{\frac{\widetilde{\rho }}{8}+\frac{\widetilde{\rho }^2}{128}}}\\&\qquad \times \sup \limits _{m,q\ge 1}\textbf{E}\left[ \exp \bigg \{(32+64\kappa )(64+128\kappa )2p\gamma \zeta ^{(m,q)} \bigg \} \right] ^{{\frac{\widetilde{\rho }}{2}+\frac{\widetilde{\rho }^2}{32}}}\\&\qquad \times \mathbf {{E}}\left[ \exp \bigg \{(64+128\kappa )2p\gamma \sup \limits _{s\in [0,T]}\delta _{\theta }\overline{Y}^{(1,q)}_{s}\bigg \} \right] ^{({\frac{1}{2}+\frac{\widetilde{\rho }}{16})}(16\beta h+32\kappa \beta h)^{m-1}}, \end{aligned}$$

which also implies the desired assertion when \(\mu =2\). Iterating the above procedure \(\mu \) times in the general case, we complete the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Moreau, R. & Wang, F. General Mean Reflected Backward Stochastic Differential Equations. J Theor Probab 37, 877–904 (2024). https://doi.org/10.1007/s10959-023-01288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-023-01288-z

Keywords

Mathematics Subject Classification (2020)

Navigation