Skip to main content
Log in

Strong Solutions to a Beta-Wishart Particle System

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the existence and uniqueness of solutions to a stochastic differential equation (SDE) coming from the eigenvalues of Wishart processes. The coordinates are non-negative, evolve as Cox–Ingersoll–Ross (CIR) processes and repulse each other according to a Coulombian like interaction force. We show the existence of strong and pathwise unique solutions to the system until the first multiple collision and give a necessary and sufficient condition on the parameters of the SDEs for this multiple collision not to occur in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Bru, M.-F.: Diffusions of perturbed principal component analysis. J. Multivar. Anal. 29(1), 127–136 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bru, Marie-France: Wishart processes. J. Theoret. Probab. 4(4), 725–751 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chybiryakov O: Processus de Dunkl et relation de Lamperti, June (2006), Thèse Paris VI

  5. Cox, J.C., Ingersoll, J.E., Ross, S.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cèpa, E., Lépingle, D.: Diffusing particles with electrostatic repulsion. Probab. Theory Relat. Fields 107(4), 429–449 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cèpa, E., Lépingle, D.: Brownian particles with electrostatic repulsion on the circle: Dyson’s model for unitary random matrices revisited. ESAIM Probab. Stat. 5, 203–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cépa E: Équations différentielles stochastiques multivoques, Séminaire de Probabilités, XXIX, Lecture Notes in Math., vol. 1613, pp. 86–107. Springer, Berlin, (1995)

  9. Demni, N.: The laguerre process and generalized Hartman-Watson law. Bernoulli 13(2), 556–580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demni, N.: Radial dunkl processes: existence, uniqueness and hitting time. C. R. Math. Acad. Sci. Paris 347(19–20), 1125–1128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forrester, P.J.: Log-gases and Random Matrices. London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  13. Göing-Jaeschke, A., Yor, M.: A survey and some generalizations of bessel processes. Bernoulli 9(2), 313–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graczyk, P., Malecki, J.: Multidimensional Yamada-Watanabe theorem and its applications to particle systems. J. Math. Phys. 54(2), 021503 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graczyk, P., Malecki, J.: Strong solutions of non-colliding particle systems. Electron. J. Probab. 19(119), 21 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Graczyk, P., Malecki, J.: On squared bessel particle systems. Bernoulli 25(2), 828–847 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. König, W., O’Connell, N.: Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. Electron. Comm. Probab. 6, 107–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  19. Katori, M., Tanemura, H.: Noncolliding processes, matrix-valued processes and determinantal processes [translation of mr2561146]. Sugaku Expos. 24(2), 263–289 (2011)

    Google Scholar 

  20. Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142(3), 592–615 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamberton, D., Lapeyre, B.: Introduction to stochastic calculus applied to finance. Chapman & Hall/CRC Financial Mathematics Series, 2nd edn. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  22. Lépingle, D.: Boundary behavior of a constrained Brownian motion between reflecting-repellent walls. Probab. Math. Statist. 30(2), 273–287 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Rogers, L., Chris, G., Zhan, S.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rösler, M., Voit, M.: Markov processes related with Dunkl operators. Adv. Appl. Math. 21(4), 575–643 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rogers, L.C.G., David, W.: Diffusions, Markov Processes, and Martingales. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). Itô calculus, Reprint of the second (1994) edition

    Book  MATH  Google Scholar 

  26. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Schapira, B.: The Heckman-Opdam Markov processes. Probab. Theory Relat. Fields 138(3–4), 495–519 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21(22), 41 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Voit M, Woerner JHC.: Functional central limit theorems for multivariate bessel processes in the freezing regime, (2019), arXiv:1901.08390

  30. Yor, M., Chybiryakov, O., Gallardo, L.: Dunkl processes and their radial parts relative to a root system. In: Graczyk, P., Rösler, M., Yor, M. (eds.) Harmonic and Stochastic Analysis of Dunkl Processes. Hermann, Paris (2008). Travaux en cours

    Google Scholar 

Download references

Acknowledgements

We thank Djalil Chafai for numerous fruitful discussions. We also thank the referees for their remarks which helped us to improve the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezéchiel Kahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The next lemma deals with the existence and uniqueness to the CIR SDE and with the probability for the solution to hit zero. It is proved, for instance, in [21, Theorem 6.2.2 and Proposition 6.2.3]. The point 4. comes directly from [5].

Lemma 6.1

Let \(a\ge 0,b,\sigma \in {\mathbb {R}}\). Suppose that W is a standard Brownian motion defined on \({\mathbb {R}}_+\). For any real number \(x\ge 0\), there is a unique continuous, adapted process X, taking values in \({\mathbb {R}}_+\), satisfying \(X_0=x\) and

$$\begin{aligned} dX_t=(a-bX_t)dt+\sigma \sqrt{X_t}dW_t \text { on } [0,\infty ). \end{aligned}$$

Moreover, if we denote by \(X^x\) the solution to this SDE starting at x and by \(\tau _0^x=\inf \{t\ge 0 : X_t^x=0\}\),

  1. 1.

    If \(a\ge \sigma ^2/2\), we have \({\mathbb {P}}(\tau ^x_0=\infty )=1\), for all \(x>0\).

  2. 2.

    If \(0\le a <\sigma ^2/2\) and \(b\ge 0\), we have \({\mathbb {P}}(\tau ^x_0<\infty )=1\), for all \(x>0\).

  3. 3.

    If \(0\le a <\sigma ^2/2\) and \(b<0\), we have \(0<{\mathbb {P}}(\tau ^x_0<\infty )<1\), for all \(x>0\).

  4. 4.

    For all \(s>t\),

    $$\begin{aligned}{\mathbb {E}}[r_s|r_t] = r_te^{-b(s-t)}+\frac{a}{b}(1-e^{-b(s-t)}). \end{aligned}$$

The following result is the Ikeda–Watanabe Theorem, which allows to compare two Itô processes if their starting points and their drift coefficients are comparable, and if their diffusion coefficients are regular enough. It is proved, for instance, in [25, Theorem V.43.1 p.269].

Theorem 6.2

(Ikeda–Watanabe) Suppose that, for \(i=1,2\),

$$\begin{aligned} X^i_t = X^i_0+\int _0^t\sigma (X^i_s)dB_s+\int _0^t\beta _s^ids, \end{aligned}$$
(39)

and that there exist \(b:{\mathbb {R}}\mapsto {\mathbb {R}}\), such that

$$\begin{aligned} \beta ^1_s\ge b(X^1_s)\text {, }b(X^2_s)\ge \beta ^2_s. \end{aligned}$$

Suppose also that

  1. 1.

    \(\sigma \) is measurable and there exists an increasing function \(\rho :{\mathbb {R}}_+\mapsto {\mathbb {R}}_+\) such that

    $$\begin{aligned} \int _{0^+}\rho (u)^{-1}du=\infty , \end{aligned}$$

    and for all \(x,y\in {\mathbb {R}},\)

    $$\begin{aligned} (\sigma (x)-\sigma (y))^2\le \rho (|x-y|); \end{aligned}$$
  2. 2.

    \(X^1_0\ge X^2_0\) a.s.;

  3. 3.

    b is Lipschitz.

Then, \(X^1_t\ge X^2_t\) for all t a.s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jourdain, B., Kahn, E. Strong Solutions to a Beta-Wishart Particle System. J Theor Probab 35, 1574–1613 (2022). https://doi.org/10.1007/s10959-021-01109-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01109-1

Keywords

Mathematics Subject Classification

Navigation